
Eurostars Project

3DFed – Dynamic Data Distribution and Query Fed-
eration
Project Number: E!114681 Start Date of Project: 2021/04/01 Duration: 36 months

Deliverable 5.3
A report on 3DFed evaluation based on doc-
ument data use case

Dissemination Level Public

Due Date of Deliverable March 31, 2024

Actual Submission Date March 31, 2024

Work Package WP5, Use Cases

Deliverable D5.3

Type Report

Approval Status Final

Version 1.0

Number of Pages 14

Abstract: In this deliverable we evaluate dynamic data exchange between data nodes against a RDF
datset of elevait as a real word use case. We propose a method to compare the dynamic partitioning vs.
static partitioning and evaluate both method based on the elevait dataset in terms of different measurs.
The evaluation results certainly hinted at the effectiveness of the dynamic method.

The information in this document reflects only the author’s views and Eurostars is not liable for any use that may be made of the information

contained therein. The information in this document is provided "as is" without guarantee or warranty of any kind, express or implied, including

but not limited to the fitness of the information for a particular purpose. The user thereof uses the information at his/ her sole risk and liability.

3DFed Project by Eurostars.

D5.3 - v. 1.0
. .

History

Version Date Reason Revised by

0.1 01/02/2024 Initial Template & Deliverable Structure Mohammad Sajjadi

0.2 07/02/2024 Initial Draft Asal Alikhani

0.3 23/03/2024 Issued for review Mohammad Sajjadi

0.4 28/03/2024 Review Muhammad Saleem

0.5 30/03/2024 Final Revision Asal Alikhani & Martin
Voigt

1.0 31/03/2024 Final Submission Mohammad Sajjadi

Author List

Organization Name Contact Information

elevait GmbH & Co. KG Asal Alikhani asal.alikhani@elevait.de

University of Paderborn Muhammad Saleem saleem@informatik.uni-leipzig.de

elevait GmbH & Co. KG Martin Voigt martin.voigt@elevait.de

elevait GmbH & Co. KG Mohammad Sajjadi mohammad.sajjadi@elevait.de

. .
Page 1

D5.3 - v. 1.0
. .

Contents

1 Introduction 3

2 RDF Graph Partitioning 3

3 Our proposed partitioning: 4

3.1 Graph Modeling . 5

3.2 Graph Clustering . 5

3.3 Assigning Clusters to Partitions . 7

4 Dynamic Data Distribution 7

5 Evaluation 8

5.1 Evaluation Setup . 8

5.2 Evaluation Results . 10

Partitioning: . 10

Dynamic data exchange: . 10

Static data exchange: . 11

Dynamic data exchange vs Static data exchange: . 12

6 Conclusion and Future Work 14

References 14

. .
Page 2

D5.3 - v. 1.0
. .

1 Introduction

Partitioning large datasets among multiple data nodes is essential for enhancing the scalability, availability, and
overall performance of storage systems. Distributed triple stores commonly employ RDF graph partitioning
techniques to optimize query processing. However, existing approaches often overlook the specific properties
of RDF graphs, leading to sub-optimal query runtime. Novel approach to RDF graph partitioning that focuses
on workload-based analysis, leveraging predicate co-occurrences in querying patterns. State-of-the-art RDF
graph partitioning techniques can be divided into various categories [4]. Predicates Co-occurrence-based
Partitioning using Extended Markov Clustering (PCM). These methods employ clustering algorithms to group
predicates, enabling the creation of partitions that optimize data distribution. This approach aims to minimize
inter-communication between partitions by storing RDF triples with commonly queried predicates together. By
prioritizing predicates based on their frequency of occurrence in user queries, we anticipate improved query
runtime performance. Notably, this technique offers advantages in managing index updates, dynamic data
redistribution, and replication.

The workload-based static data distribution can have inherent problems because the user queries may change
over time. As such, the resulting partition scheme might not be very efficient. In this case, it might be required
to construct new partitions according to the new querying workload. Once the data is distributed initially and is
being used in practice, the next step is to dynamically exchange the data between the storage solutions provided
that it can lead to further performance improvements in query federation. To this end, we then make use of the
fresh query logs to dynamically exchange the data between the data storage solutions. The overall goal is to
improve the query runtime performance and distribute the load among data storage solutions to improve their
availability. Consequently, this will facilitate the development of high-performance federation engines. We
aim to exchange the data between storage solutions dynamically and exploit data locality to maximise/balance
the amount of computation in a single storage solution. The dynamic exchange of data can be a deletion or an
insertion.

In previous deliverables we proposed two novel algorithms namely PCG and PCM for static distribution of RDF
knowledge graphs. We evaluated these algorithms with public dataset such as Semantic Dog food dataset and
some of dbpedia datasets. These algorithms are based on querying history, which changes with time. As such,
we needed to adopt the proposed distribution according to the change in querying history with time. To this end,
we need a means to dynamic data exchange between data nodes according to the new querying workload. In this
deliverable we proposed a method to do the dynamic data exchange between nodes and do final evaluation based
on the one of elevait’s dataset. The evaluation results certainly hinted at the usefulness of the proposed method.

2 RDF Graph Partitioning

In distributed RDF engines, the given data needs to be distributed among multiple data nodes. The partitioning
of big data among multiple data nodes helps in improving systems availability, ease of maintenance, and overall
query processing performances. The RDF graph partitioning problem is defined as follows.

Definition 1 (RDF Graph Partitioning Problem) Given an RDF graph G = (V,E), divide G into n sub-

graphs G1, . . . Gn such that G = (V,E) =
n⋃

i=1
Gi, where V is the set of all vertices and E is the set of all edges

in the graph.

A recent empirical evaluation [1] of the different RDF graph partitioning showed that the type of partitioning
used in the RDF engines has a significant impact on the query runtime performance. They conclude that the data

. .
Page 3

D5.3 - v. 1.0
. .

1 @prefix hierarchy1: <http://first/r/> . @prefix hierarchy2: <http ://
second/r/> .

2 @prefix hierarchy3: <http://third/r/> . @prefix schema: <http :// schema
/> .

3 hierarchy1:s1 schema:p1 hierarchy2:s11 . #Triple 1
4 hierarchy1:s1 schema:p2 hierarchy2:s2 . #Triple 2
5 hierarchy2:s2 schema:p2 hierarchy2:s4 . #Triple 3
6 hierarchy1:s1 schema:p3 hierarchy3:s3 . #Triple 4
7 hierarchy3:s3 schema:p2 hierarchy1:s5 . #Triple 5
8 hierarchy3:s3 schema:p3 hierarchy2:s13 . #Triple 6
9 hierarchy2:s13 schema:p1 hierarchy2:s8 . #Triple 7

10 hierarchy1:s1 schema:p4 hierarchy3:s9 . #Triple 8
11 hierarchy3:s9 schema:p1 hierarchy2:s4 . #Triple 9
12 hierarchy2:s4 schema:p4 hierarchy2:s13 . #Triple 10
13 hierarchy2:s11 schema:p2 hierarchy1:s10 . #Triple 11

Figure 1: An example RDF triples

1 SELECT * WHERE SELECT * WHERE SELECT * WHERE SELECT *
WHERE

2 { { { {
3 ?S ?P1 ?O1. ?S ?P1 ?O. ?S1 ?P1 ?O. ?O ?P1 ?S.
4 ?S ?P3 ?O3 ?O ?P3 ?O3 ?S3 ?P3 ?O ?S ?P3 ?S3
5 } } } }
6
7 SELECT * WHERE SELECT * WHERE SELECT * WHERE SELECT * WHERE
8 { { { {
9 ?S ?P1 ?O1. ?S ?P1 ?O. ?S1 ?P1 ?O. ?S ?P1 ?O.

10 ?S ?P2 ?O2 ?O ?P2 ?O2 ?S2 ?P2 ?O. ?S ?P2 ?O.
11 } } } ?S ?P3 ?O.
12 ?S ?P4 ?O
13 }

Listing 1: Query examples

that is queried together in SPARQL queries should be kept in the same node, thus minimizing the network traffic
among data nodes. In this example, we want to partition the 11 triples into 3 partitions namely green, red, and
blue partitions.

Workload-Based Partitioning: The partitioning techniques in this category make use of the query workload to
partition the given RDF dataset. Ideally, the query workload contains real-world queries posted by the users of
the RDF dataset which can be collected from the query log of the running system. However, the real user queries
might not be available. In this case the query workload can either be estimated from queries in applications
accessing the RDF data or synthetically generated with the help of the domain experts of the given RDF dataset
that needs to be partitioned.

3 Our proposed partitioning:

In the following some of the data and text is re-used from D3.2 for the sake of completeness. In the following,
we suppose we have a workload of eight queries as shown in Listing 1. PCM and PCG make use of clustering
algorithms (proposed in D3.2) to first cluster all the predicates used in the input querying workload. The
partitions are then created according to the clusters such that all triples pertaining to predicates in a given cluster
are distributed into the same partition.

. .
Page 4

D5.3 - v. 1.0
. .

P1 P2 Co-occurrences

p1 p2 4

p1 p3 5

p1 p4 1

p2 p3 1

p2 p4 1

p3 p4 1

(a) Predicate co-occurrences

e1

e2 4

e3

e5

e4
e6 1

5

1

1

1

p1

p2 p4

p3

(b) Weighted graph of the predicate co-occurrences

Figure 2: The predicate co-occurrences table and corresponding weighted graph for the example queries given in
Listing 1.

Both of our techniques comprise three main steps: (i) extract a list of predicate co-occurrences from a querying
workload and model them as a weighted graph (Section 3.1), (ii) use this weighted graph as an input to generate
clusters of predicates (Section 3.2), and (iii) allocate the obtained clusters to partitions (Section 3.3).

3.1 Graph Modeling

Since both techniques are based on query workload, we assume that we are given a query workload Q =
{q1, . . . , qn} of SPARQL queries. Ideally, the query workload Q contains real-world queries posted by the users
of the RDF dataset, which can be collected from the query log of the running system. However, real user queries
might not be available. In this case the query workload can be either estimated from queries in applications
accessing the RDF data or synthetically generated with the help of the domain experts of the given RDF dataset
that needs to be partitioned.

For a given workload Q = {q1, . . . , qn}, we create a predicates co-occurrence list L = {e1, . . . , em} where
each entry is a tuple e =< p1, p2, c >, with p1, p2 two different predicates used in the triple patterns of SPARQL
queries in the given workload, and c is the co-occurrence count, i.e. the number of queries in which both p1 and
p2 are co-occurred. By looking at our query examples given in listing 1, the predicates p1, and p2 co-occurred in
a total of 4 queries, thus one entry of the L will be < p1, p2, 4 >. For the sake of simplicity, the corresponding
predicate-to-predicate co-occurrence list for our query examples is shown in Figure 2a. Finally, we model the
list L as a weighted graph, such that for a given list entry e =< p1, p2, c >, we create two nodes (one each for
p1 and p2) that are connected by a link with weight equalling c. The corresponding weighted graph is shown in
figure 2b.

3.2 Graph Clustering

Two proposed clustering algorithms (PCM, PCG) generate clusters of predicates from the weighted predicates
graph generated in the previous section.

PCM Clustering. Algorithm 1 shows the predicate clustering using a modified version of the well-known
Markov1 clustering. For the input weighted predicates graph G, a transition matrix T is created which is then
normalized (Lines 2-3 of algorithm 1). A transition matrix is basically a matrix representation of a weighted

1Markov clustering: https://micans.org/mcl/

. .
Page 5

https://micans.org/mcl/

D5.3 - v. 1.0
. .

Algorithm 1: Adapted Markov Clustering

1 MCL(G, e, r ,n) /* Input: Weighted predicates graph G, sequence of powers e = 2,
sequence of inflation parameters r = 0.001, and n number of required clusters */

2 T ∈ Rp×p = GetTransitionMatrix(G) ;
3 T ∈ Rp×p = Normalize(T) ;
4 while ∃c∈{1,...,p}(

∑p
r=1 Tr,c) > 1 do

5 T := (T)e // Expend
6 T := Inflate(r, Power(e, T)) // Inflate

7 end
8 return getClusters(T, n) /* get n clusters from matrix */

P1 P2 P3 P4

P1
P2
P3
P4

0 4/10 5/10 1/10
4/6 0 1/6 1/6
5/7 1/7 0 1/7
1/3 1/3 1/3 0

Normalized Matrix

P1 P2 P3 P4

P1
P2
P3
P4

0 4 5 1
4 0 1 1
5 1 0 1
1 1 1 0

Transition Matrix

P1 P2 P3 P4

P1
P2
P3
P4

1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.99
1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.99

Final Matrix

Figure 3: Creation of a matrix during PCM using our weighted graph

graph. Since our weighted graph shown in Figure 2b has four nodes, a 4 × 4 (one row and column for each
predicate vertex) matrix will be created. The corresponding transition matrix is shown in Figure 3. The
normalization of the matrix is done by dividing each element of a particular column by the sum of all the
elements in that column. The normalized matrix is shown in Figure 3.

The next two steps are the standard expansion and inflation of the Markov clustering, applied on the normalized
transition matrix. These steps are continued until there is no column in the transition matrix with a total sum
greater than 1 (Lines 4-8 of algorithm 1). The expansion is a simple self-multiplication of the matrix, raised
to the power of input parameter e. The inflation matrix results from re-scaling each of the columns of T with
power coefficient r. We encourage readers to have a look at the standard Markov clustering algorithm for further
details and effects of these steps.

The last step is to interpret the resulting transition matrix to discover n clusters. This is achieved by sequentially
adding non-zero row-wise values of matrix T to a cluster. For example, in our final matrix shown in Figure 3,
the first non-zero row-wise value is 0.66 at position T1,2. Thus, the corresponding predicates, i.e. p1, p2, will be
added into a single cluster. The next non-zero row-wise value is at position T1,3, which corresponds to predicates
p1, p3. Since p1 already exists, only p3 will be added into the cluster. Finally, p4 will be added. Now our cluster
contains a sequential list of predicates {p1, p2, p3, p4}. Since we need n partitions, we simply divide the total
elements from the cluster by n number of required partitions to get the number of elements from the sequential
list of elements to be combined into a single partition. In our case, the number of elements is 4 while desired
partitions are 3. Thus, we divide 4/3 and assign the first two elements (i.e., p1, p2) to partition 1 and the next
element (i.e., p3) into partition 2 and the final element into partition 3. The final cluster of predicates is shown in
figure 4a. Please note that it is possible that there exist many predicates in the RDF dataset that are not used in
the query workload. In that case we assign a single separate partition for all unused predicates.

PCG Clustering. Algorithm 2 shows the predicate clustering using the proposed greedy clustering method.
The first step is to calculate the expected size (in terms of the number of triples) of each partition. The next step
is to obtain all edges between predicates according to their increasing order of weights. For the graph given in
Figure 2b, our sorted list of edges will be E = {e1, e2, e3, e4, e5, e6}. The next step is to loop through each edge

. .
Page 6

D5.3 - v. 1.0
. .

Algorithm 2: Greedy Clustering

1 PCG(G, D, n) /* Input: Weighted predicates graph G, Dataset D to be partitioned, n
number of required clusters */

2 t = |D|/n− 1 ; // Size of a partition
3 E = getSortedEdges(G) ; /* Obtain all edges between the predicates according to their

weight */
4 C = {c1 . . . cn} ; // Required clusters
5 i = 1 ;
6 forall ej ∈ E do
7 P (pk, pl) = getNodesPair(G, ej) /* Obtain both nodes (predicates) that are connected

by the edge ei */
8 T = getTriplesCount(D, P (pk, pl)) /* get the combined count of the triples for

predicates pk and pl from dataset D */
9 if |ci| < t /* if size of triples in cluster ci is less than the threshold t */

10 then
11 ci ← {pk, pl} ; // assign both predicates to cluster
12 else
13 i = i + 1 ; // move to next cluster
14 end
15 end
16 return C ; // Clusters

ej ∈ E and get the corresponding predicates that are connected by the given edge ej (Lines 6-7 of algorithm 2).
We then get the combined count of the triples for predicates pk and pl from the input dataset D. If the current
size of the cluster ci is less than the threshold t, both predicates are added into the same cluster ci. However, if
the size of the current cluster exceeds the threshold, a new cluster is created for the upcoming predicates (Lines
8-14 of algorithm 2). The final three clusters of predicates are shown in figure 4b. Please note that, as with PCM,
it is possible that there exist many predicates in the RDF dataset that are not used in the query workload. In that
case, we assign a single separate partition for all unused predicates.

3.3 Assigning Clusters to Partitions

The clustering algorithms explained in the previous steps give n clusters of predicates. In the last step, triples
from a given RDF dataset D are distributed into partitions according to the aforementioned predicate-based
partitions: for each predicate p in a specific cluster ci, assign all the triples with predicate p ∈ D into the same
partition. Figure 5a and 5b show the final partitions created by both of the proposed techniques.

4 Dynamic Data Distribution

Now we explain the dynamic data distribution according to the new workload. We propose to collect a query log
of a time frame and make a new data distribution. We follow the following steps in each experiment to perform
this task.

• We get a querying workload W1 and perform predicate-clustering using PCM. The corresponding cluster
of predicates C1 is then assigned to physical partitions as discussed before.

. .
Page 7

D5.3 - v. 1.0
. .

MCL Results are
Partition1 = P1 P2
Partition2 = P3
Partition3 = P4

PCo Results are
Partition1 = P1 P3

Partition2 = 2
Partition3 = P4

PCG

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

PCM

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

(a) PCM

MCL Results are
Partition1 = P1 P2
Partition2 = P3
Partition3 = P4

PCo Results are
Partition1 = P1 P3

Partition2 = 2
Partition3 = P4

PCG

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

PCM

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

(b) PCG

Figure 4: Predicate clusters created by the proposed techniques for the example RDF dataset given in Figure 1.
Clusters are highlighted in different colors)

p1 p3

p4p2

(a) PCM

p1 p3

p4p2

(b) PCG

Figure 5: Final three partitions created by the proposed techniques for the example RDF dataset given in Figure 1.
Partitions are highlighted in different colors)

• The triple store is then used in practice for next time frame and the new workload W2 is collected. We
perform again the predicate-clustering C2 using PCM and new workload.

• We compare C1 and C2 for any changes, i.e., we check if predicate clusters are changed in the C2 w.r.t
C1. If there occurs no change, we do not make any dynamic data distribution among physical partitions.
If there exist changes, we carry on the required changes (insertion or deletion of triples) in the current
physical partitions to exactly reflect the C2.

• We repeat these steps for consequent time frames. Deciding about the length of time frame depends on the
different use cases of the dataset during the time.

5 Evaluation

In this section, we present our evaluation setup followed by evaluation results.

5.1 Evaluation Setup

Dataset: We used ai:mp one of elevait’s RDF datasets which its data model can be seen in Figure 6. it had
237430 triples of Job vacancies and CVs and their relations to load and to be queried, We chose this dataset
because it is small but has enough diverse queries. The number of triples and distinct subjects, predicates and
objects can be seen in Table 1.

. .
Page 8

D5.3 - v. 1.0
. .

Figure 6: elevait dataset of job vacancies and CVs

Triples Subjects Predicates Objects

237,430 13,313 120 30,708

Table 1: The total number of triples, distinct subjects, predicates, and objects within the used dataset.

Query Workloads (train) and Benchmark (test) Queries: We used a query log of 9910 queries on ai:mp
dataset. This query log includes six time frame each focused on similar queries, which was used for dynamic
data exchange. Users of this dataset at the beginning of the query log, mostly queried Job Postings and CVs,
afterwards they had a time frame to investigate related jobs and CVs and at the end they used more aggregation,
statistics and demographic queries. Considering these 3 use cases we divided this query log to six Query Sets
For conducting six experiments. We considered the first 80 percent of each Query Set as a query workload
(train queries) and the rest 20 percent as benchmark (test queries). The number of queries of each workload and
benchmark set are listed in Table 2. In each experiment workload was used by Partitioning technique, and the
benchmark was executed by the evaluation environment.

Evaluation Environments: We used Costfed as the evaluation environment to distribute partition files, execute
benchmark queries and evaluate the performance measures. The reason why we chose Costfed is that it is a

Query Total Workload Benchmark

Set queries

1 150 120 30

2 1980 1584 396

3 200 160 40

4 3740 2992 748

5 170 136 34

6 3670 2936 734

Table 2: Query Workloads and Benchmark queries

. .
Page 9

D5.3 - v. 1.0
. .

purely federated environment, and is the best system in terms of parallel execution of queries based on [3]. In
this environment the given RDF data is distributed among several physically separated machines and a federation
engine is used to do federated query processing over multiple SPARQL endpoints.

Number of partitions: Inspired by [3], we created 10 partitions based on each workload of the selected data set
and the partitioning technique.

Selected RDF Graph Partitioning Technique: We used the PCM clustering algorithm because it has proven to
be performing better than PCG in terms clustering generation.

Performance Measures: We used Queries per Second (QpS), and the average query runtime to compare the
performance of the proposed dynamic versus Static data exchange. We used a ten minutes timeout for query
execution of each query.

Partitioning Imbalance: Inspired by [2] we used Gini coefficient to measure The imbalance in partitions. For n
partitions (P1 , P2 , . . . Pn) generated by the partitioning technique, ordered according to the increasing number
of triples, Gini coefficient is calculated as:

Gini =
n+ 1

n
−

2 ∗
∑n

i=1(n+ 1− i)xi

n
∑n

i=1 xi
(1)

Hardware and Software Specifications: The hardware and software configuration for our techniques is the
same as [1], i.e., all our experiments are executed on a Ubuntu-based machine with intel i7-11370H 3.30 GHz, 8
cores and 32GB of RAM. We conducted our experiments on local copies of Linux-based virtuoso-opensource-7
(version 7.2.12) SPARQL endpoints.

5.2 Evaluation Results

Partitioning:

In each experiment the query workload was used by PCM to create 10 partition files. PCM finds unique queries
in the workload and distributes triples of dataset based on the co-occurrences of predicates in the queries. For
each query workload the number of triples of each partition is shown in Table 7c

Imbalance in partitions: Imbalance in partitions for each experiment is shown in Table 7c and Figure 7b.
Imbalance can decrease by using other partitioning techniques based on [1] and [2].

Dynamic data exchange:

Table 8c shows performance measures of 6 experiments in dynamic method. In this method each workload is
used to distribute dataset before executing its related benchmark. The Ex1 represents the initial workload and
benchmark pair. Ex2 is the next pair of workload and benchmark and so on. We did data distribution according
to workload queries of Ex1 and executed benchmark queries of Ex1 and reported performance measures. We
follow the same process for Ex2 until Ex6.

Average Query Runtime: Figure 8a shows a comparison of the average query runtime for the same 6 experiments
in dynamic method. Again, the result suggests that query runtime is improved (decreased) with dynamic data
distribution while going from Ex1 to Ex6. This shows the effectiveness of the proposed dynamic data distribution.

Query per Second (QpS): Figure 8b shows a comparison of the QpS values for the 6 experiments in dynamic
method. We can clearly see the QpS is improved (increased) with dynamic data distribution while going from
Ex1 to Experiment Ex6. This shows the effectiveness of the proposed dynamic data distribution.

. .
Page 10

D5.3 - v. 1.0
. .

Query Total Workload PCM PCM

Set queries queries time(ms)

1 150 120 14 823

2 1980 1584 197 1651

3 200 160 18 879

4 3740 2992 373 2775

5 170 136 16 777

6 3670 2936 357 1146

(a) PCM queries and partitioning time (b) Imbalance in partitions

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

643 3655 22212 90578 5636 19808 2951 5642 106 86199

5742 85140 21971 5688 555 491 1431 4211 5726 106475

1431 86139 3244 3008 3047 2880 1393 6014 2144 128130

2880 7164 1689 1681 3158 1431 1393 7512 82392 128130

4789 8902 88957 179 5924 3047 3030 1431 1393 119778

3185 7295 85029 6923 2997 4656 5742 106 1719 119778

(c) The number of triples in each Partition created by PCM based on 6 workloads

Figure 7: Partitioning by PCM

Static data exchange:

Table 9c shows a comparison of the performance measures for 6 experiments in the static method. In this
method the first workload is used to distribute dataset before executing all of the benchmark queries. The Ex1
represents the workload queries for the related benchmark queries in Ex1 but for Ex2 to Ex6 the workload
was not changed for different benchmarks. We did data distribution according to workload queries of Ex1 and
executed benchmark queries of Ex1 to Ex6 and reported performance measures for each.

Average Query Runtime: Figure 9a shows a comparison of the average query runtime for the same 6 experiments
in static method. Again, the result suggests that query runtime have increased (not improved) with static data
distribution while going from Ex1 to Ex6. This shows the effectiveness of the proposed dynamic data distribution.

Query per Second (QpS): Figure 9b We can clearly see the QpS (in general) have decreased (not improved)
with static data distribution while going from Ex1 to Experiment Ex6. This shows the effectiveness of the
proposed dynamic data distribution.

. .
Page 11

D5.3 - v. 1.0
. .

(a) (Avg. runtime of dynamic data exchange (b) QpS of dynamic data exchange

Experiment Workload Benchmark Queries Total RT(ms) Avg. RT(ms) QpS

Ex1 1 1 30 56 18.7 53.57

Ex2 2 2 396 346 0.88 1,135.84

Ex3 3 3 126 14,510 5.25 190.48

Ex4 4 4 481 220,223 0.65 1,536.38

Ex5 5 5 69 67,157 2.09 478.26

Ex6 6 6 239 13,065 0.33 3,071.13

(c) CostFed results of dynamic data exchange

Figure 8: Performance measures of each benchmarks after loading partitions based on the related workload

Dynamic data exchange vs Static data exchange:

We can clearly see that the performance measures of the various tests have improved (increased) over time
with the dynamic data distribution, however, we can also see that the improvement is not linear. For example
in Figure 8 the QpS and Average query runtime of Ex2 is better than Ex3 (and Ex4 is better than Ex5). The
possible reason is that dividing of query log for different experiments was done based on use cases at different
periods of time. In each period of time, the most frequently querying concepts can be completely different and
independent from other periods. Therefore we compared these metrics of each experiment in both methods.

Average Query Runtime: Figure 10a shows a comparison of the average query runtime for each experiment in
both methods. Again, the result suggests that query runtime is better(less) in dynamic data distribution than
static method in each experiment. This shows the effectiveness of the proposed dynamic data distribution.

Query per Second (QpS): Figure 10b shows a comparison of the QpS values for each experiment in both
methods. We can clearly see the QpS is better(more) in dynamic data distribution than static method in each
experiment. This shows the effectiveness of the proposed dynamic data distribution.

. .
Page 12

D5.3 - v. 1.0
. .

(a) Avg. runtime of Static workload (b) QpS of Static workload

Experiment Workload Benchmark Queries Total RT(ms) Avg. RT(ms) QpS

Ex1 1 1 30 56 19 53.57

Ex2 1 2 396 8,070 44 22.92

Ex3 1 3 40 14,510 392 2.55

Ex4 1 4 748 220,223 5,952 0.17

Ex5 1 5 34 67,157 1,865 0.54

Ex6 1 6 734 13,065 229 4.36

(c) CostFed results of static data exchange

Figure 9: Performance measures of each benchmark after loading partitions based on the first workload

(a) Avg. runtime of dynamic vs. Avg runtime of Static
data exchange (b) QpS of dynamic vs. QpS of Static data exchange

Figure 10: Comparing performance measures of dynamic vs. static data exchange for each benchmark

. .
Page 13

D5.3 - v. 1.0
. .

1 PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema#>
2 SELECT DISTINCT ?focusNode ?subject ?predicate ?object WHERE {
3 {SELECT DISTINCT ?node WHERE {
4 {SELECT DISTINCT ?node WHERE {
5 { ?node a <http://ai4bd.com/resource/edm/Education

> }
6 }}} LIMIT 24 OFFSET 0
7 }
8 BIND (?node AS ?focusNode)
9 {BIND (?node AS ?subject)

10 ?subject ?predicate ?object .}
11 UNION
12 {BIND (rdfs:label as ?predicate)
13 ?node ?p ?subject .
14 ?subject ?predicate ?object .}
15 UNION
16 {BIND (rdfs:label as ?predicate)
17 ?subject ?p ?node .
18 ?subject ?predicate ?object .}
19 }

Figure 11: a sample of the most common query type used in elevait

6 Conclusion and Future Work

In this deliverable, we evaluated dynamic data exchange using a real world dataset. We made use of 6 querying
workloads on a dataset of Job Postings and CVs from elevait as a real use case and did dynamic data shuffling
according to the new workloads. We used QpS and the Average query runtime as two performance measures.
The results clearly show significant differences in the performance measures achieved by the proposed dynamic
data partitioning mechanism based on experienced workload, as it was also examined and proved within the
previous tasks.

In the future, more datasets and different partitioning techniques such as PCG which creates more balanced
partitions can be used to evaluate the proposed dynamic data exchange. We suggest to focus on the effects of
partitioning pertaining to use cases which involve validating and reasoning tasks by SHACL shapes or data
updates etc. In elevait’s dataset, SHACL shapes are used to define properties of a class or relationships between
classes, therefore there are lots of queries similar to the sample in Listing Figure 11 which currently is not
supported by proposed algorithms.

References

[1] Akhter et al. An empirical evaluation of rdf graph partitioning techniques. In European Knowledge
Acquisition Workshop, 2018.

[2] Adnan Akhter, Muhammad Saleem, Alexander Bigerl, and Axel-Cyrille Ngonga Ngomo. Efficient rdf
knowledge graph partitioning using querying workload. 11 2021.

[3] Saleem et al. A fine-grained evaluation of sparql endpoint federation systems. 2016.

[4] Waqas et al. Storage, indexing, query processing, and benchmarking in centralized and distributed rdf
engines: A survey. 2020.

. .
Page 14

	Introduction
	RDF Graph Partitioning
	Our proposed partitioning:
	Graph Modeling
	Graph Clustering
	Assigning Clusters to Partitions

	Dynamic Data Distribution
	Evaluation
	Evaluation Setup
	Evaluation Results
	Partitioning:
	Dynamic data exchange:
	Static data exchange:
	Dynamic data exchange vs Static data exchange:

	Conclusion and Future Work
	References

