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1 Introduction

Data partitioning helps improve the scalability, availability, ease of maintenance, and overall query processing
performance of storage systems. This is achieved by splitting a big dataset into subsets and distributing it over
multiple partitions. In D3.2, we proposed a novel workload-based RDF partitioning technique that leverages the
predicates co-occurrences in the querying workload. The idea is that all RDF triples with predicates that are
most commonly queried together should be stored in the same partition. The proposed approach leads to better
query runtime because the fewer partitions being consulted by the distributed RDF engine to execute SPARQL
triple patterns. This inter-communication cost between multiple worker nodes of the distributed RDF engines
was decreased. The proposed predicate-based partition has inherent advantages, such as it leads to a natural
predicate-based index.

The workload-based static data distribution can have inherent problems because the user queries may
change over time. As such, the resulting partition scheme might not be very efficient. In this case, it might be
required to construct new partitions according to the new querying workload. In the proposed 3DFed engine,
once the data is distributed initially and is being used in practice, the next step is to dynamically exchange
the data between the storage solutions provided that it can lead to further performance improvements in query
federation. To this end, we then make use of the fresh query logs to dynamically exchange the data between the
data storage solutions. The overall goal is to improve the query runtime performance and distribute the load
among data storage solutions to improve their availability. Consequently, this will facilitate the development of
high-performance federation engines. We aim to exchange the data between storage solutions dynamically and
exploit data locality to maximise/balance the amount of computation in a single storage solution. The dynamic
exchange of data can be a deletion or an insertion.

Our proposed technique makes use of clustering algorithms (proposed in D3.2) to first cluster all the
predicates used in the input querying workload. The partitions are then created according to the clusters such
that all triples pertaining to predicates in a given cluster are distributed into the same partition. In the dynamic
distribution approach, we recreate clusters based on new workload and compare with previous clusters. If there
exist changes between the previous and current clusters, we perform all those changes and new partitions are
then created according to suggested changes. For example, assuming that in first workload W1, we get first
partition P1 with predicates list {p1, p2} and second partition P2 = {p3, p4}. Now let’s assume with the more
recent workload W2, we again created clusters with P1 = {p1, p2, p3} and P2 = {p4}. This means we need to
remove all triples with predicate p3 from partition P2 and move them to P1.

2 RDF Graph Partitioning

In distributed RDF engines, the given data needs to be distributed among multiple data nodes. The partitioning
of big data among multiple data nodes helps in improving systems availability, ease of maintenance, and overall
query processing performances. The RDF graph partitioning problem is defined as follows.

Definition 1 (RDF Graph Partitioning Problem) Given an RDF graph G = (V,E), divide G into n sub-

graphs G1, . . . Gn such that G = (V,E) =
n⋃

i=1
Gi, where V is the set of all vertices and E is the set of all edges

in the graph.

A recent empirical evaluation [1] of the different RDF graph partitioning showed that the type of partitioning
used in the RDF engines has a significant impact on the query runtime performance. They conclude that the data
that is queried together in SPARQL queries should be kept in the same node, thus minimizing the network traffic
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1 @prefix hierarchy1: <http://first/r/> . @prefix hierarchy2: <http ://
second/r/> .

2 @prefix hierarchy3: <http://third/r/> . @prefix schema: <http :// schema
/> .

3 hierarchy1:s1 schema:p1 hierarchy2:s11 . #Triple 1
4 hierarchy1:s1 schema:p2 hierarchy2:s2 . #Triple 2
5 hierarchy2:s2 schema:p2 hierarchy2:s4 . #Triple 3
6 hierarchy1:s1 schema:p3 hierarchy3:s3 . #Triple 4
7 hierarchy3:s3 schema:p2 hierarchy1:s5 . #Triple 5
8 hierarchy3:s3 schema:p3 hierarchy2:s13 . #Triple 6
9 hierarchy2:s13 schema:p1 hierarchy2:s8 . #Triple 7

10 hierarchy1:s1 schema:p4 hierarchy3:s9 . #Triple 8
11 hierarchy3:s9 schema:p1 hierarchy2:s4 . #Triple 9
12 hierarchy2:s4 schema:p4 hierarchy2:s13 . #Triple 10
13 hierarchy2:s11 schema:p2 hierarchy1:s10 . #Triple 11

(a) An example RDF triples
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Basic RDF Graph Horizontal Subject-Based Predicate-Based

Hierarchical Recursive-Bisection TCV-Min Min-Edgecut

(b) Graph representation and partitioning. Only node numbers are shown for simplicity.

Figure 1: Partitioning an example RDF into three partitions using different partitioning techniques. Partitions are
highlighted in different colors.

among data nodes. In this section, we explain commonly used [4, 6, 9, 7] graph partitioning techniques by using
a sample RDF graph shown in Figure 11. In this example, we want to partition the 11 triples into 3 partitions
namely green, red, and blue partitions.

Horizontal Partitioning: It is the simplest form of the RDF partitioning which assumes the data is presented in
N-triples format and one line per triple). This partitioning technique is adopted from [7] and is not commonly
used in state-of-the-art RDF graph partitioning. Let n be the required number of partitions and T be the set of all

1We used different example to show a clear difference between the discussed RDF partitioning techniques.
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RDF triples in a dataset. The technique assigns (horizontally) the first |T |/n triples in partition 1, the next |T |/n
triples in partition two and so on. Using this technique, our example dataset is split such that, triples 1-4 are
assigned into green partition, triples 5-8 into are assigned into red partition, and triples 9-11 are assigned into
blue partition. The evaluation [1] shows that this technique does not lead to the better query runtime performance
as compared to other techniques discussed below.

Vertical Partitioning:

This technique divides the given RDF dataset based on predicates. Ideally, the number of distinct partitions
would be equal to the number of distinct predicates used in the dataset. However, it is possible that the number
of available data nodes (i.e. the required number of partitions) may be smaller than the number of predicates
used in the dataset. In this case the predicate tables are grouped into data nodes, i.e., multiple predicate tables
are stored in available data nodes. There can be multiple way of grouping predicate partitions: (1) first come
first serve, (2) by looking at the number of triples per predicate and thus group predicates such that maximum
load balancing is achieved among data nodes, (3) using some intelligence to determine which predicates will be
queried together, and hence grouped their corresponding triples in one partition.

In our motivating example, there are four distinct predicates while the required number of partitions are
3. Thus by using the first come for serve strategy, all the triples with predicate p1 will be assigned to first
partition (red), p2 triples will be assigned to second partition (green), p3 triples will be assigned to third partition
(blue), and p4 triples will be again assigned to first partition. This technique can lead to significant performance
improvement, provided that the predicates are intelligently grouped into partitions, such that communication
load among data nodes is reduced[1].

Hash-Based Partitioning: There are two techniques used in this category:

• Subject-Hashed. This technique assigns triples to partitions according to a the hash value computed on
their subjects modulo the total number of required partitions (i.e., hash(subject) modulus total number of
partitions)[5]. Thus, all the triples with the same subject are assigned to one partition. However, due to the
modulo operation, this technique may result in high partitioning imbalance. In our motivating example
given in Figure 1, Using this technique, our example dataset is split such that, triples 3,10 and 11 are
assigned into red partition, triple 7 is assigned into blue partition, and the remaining triples are assigned
into green partition. Thus, a clear partitioning imbalance (3:1:7 triples) results.

• Hierarchical Partitioning: This partitioning is inspired by two assumptions: (1) IRIs have path hierarchy,
(2) IRIs with a common hierarchy prefix are often queried together [5]. This partitioning technique extracts
path hierarchies from the IRIs and assigns triples having the same hierarchy prefixes into one partition.
For instance, the extracted path hierarchy of “http://www.w3.org/1999/02/22-rdf-syntax-ns#type" is
“org/w3/www/1999/02/22-rdf-syntax-ns/type". Then, for each level in the path hierarchy (e. g., “org",
“org/w3", “org/w3/www", ...) it computes the percentage of triples sharing a hierarchy prefix. If the
percentage exceeds an empirically defined threshold and the number of prefixes is equal to or greater than
the number of required partitions at any hierarchy level, then these prefixes are used for the hash-based
partitioning on prefixes. In comparison to the subject-hash-based partition, this technique requires a higher
computational effort to determine the IRI prefixes on which the hash is computed. In our motivating
example given in Figure 1, all the triples having hierarchy1 in subjects are assigned to the green partition,
triples having hierarchy2 in subjects are assigned to the red partition, and triples having hierarchy3 in
subjects are assigned to the blue partition. This partitioning may not produce the best query runtimes as
the underlying assumptions about IRIs might not be true in practice [1].

Graph-Based Partitioning: It makes use of the graph-based clustering techniques to split a given graph into the
required pairwise disjoint sub-graphs. There are three techniques used in this category:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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• Recursive-Bisection Partitioning. Recursive bisection is a multilevel graph bisection algorithm aiming
to solve the k-way graph partitioning problem as described in [6]. This algorithm consists of the
following three phases: (1)) Coarsening: The initial phase is coarsening the graph, in which a sequence
of smaller graphs G1, G2, ..., Gm is generated from the input Graph G0 = (V0, E0) in such a way that
|V0| > |V1| > |V2| > ... > |Vm|. (2) Partitioning In the second phase, computation of a 2-way partition
Pm of the graph Gm takes place, such that Vm is split into two parts and each part contains half of
the vertices. (3) Uncoarsening The third and last phase is uncoarsening the partitioned graph. In this
phase the partition Pm of Gm is projected back to G0 by passing through the intermediate partitions
Pm−1, Pm−2, ..., P1, P0.

In our motivating example given in Figure 1, triples 1, 2, 4, 7, and 8 are assigned into green partition,
triples 3, 5, 6, 9 and 10 are assigned into red partition, and triple 11 is assigned into blue partition.

• TCV-Min Partitioning. Similar to Recursive-Bisection, the TCV-Min also aims to solve the k-way graph
partitioning problem. However, the objective of the partitioning is to minimize the total communication
volume [2] of the partitioning. Thus, this technique also comprises the three main phases of the k-way
graph partitioning. However, the objective of the second phase, i.e. the Partitioning, is the minimization
of communication costs. In our motivating example given in Figure 1, triples 1, 2, 4, 5, 6, 8 and 9 are
assigned into green partition, triples 3, 7 and 10 are assigned into red partition, and triple 11 is assigned
into blue partition.

• Min-Edgecut Partitioning. The Min-Edgecut [6] also aims to solve the k-way graph partitioning problem.
However, unlike TCV-Min, the objective is to partition the vertices by minimizing the number of edges
connected to them. In our motivating example given in Figure 1, triples 1, 2, 4, 7 and 8 are assigned into
green partition, triples 3, 5, 6, 9 and 10 are assigned into red partition, and only triple 11 is assigned into
blue partition.

The graph-based partitioning techniques are computational complex, and may be very strong for splitting big
RDF datasets.

Workload-Based Partitioning: The partitioning techniques in this category make use of the query workload to
partition the given RDF dataset. Ideally, the query workload contains real-world queries posted by the users of
the RDF dataset which can be collected from the query log of the running system. However, the real user queries
might not be available. In this case the query workload can either be estimated from queries in applications
accessing the RDF data or synthetically generated with the help of the domain experts of the given RDF dataset
that needs to be partitioned.

The Figure 2 below shows different partitioning schemes found in distributed RDF engines.

3 Approach

In this section, we explain the proposed approach. Some of the data and text is re-used from D3.2 for the sake of
completeness.

In the following, we suppose we have a workload of eight queries as shown in listing 1.

In discussed in D3.2, both of our techniques comprise three main steps: (i) extract a list of predicate
co-occurrences from a querying workload and model them as a weighted graph (Section 3.1), (ii) use this
weighted graph as an input to generate clusters of predicates (Section 3.2), and (iii) allocate the obtained clusters
to partitions (Section 3.3).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 2. Types of Partitioning in centralized and Distributed RDF Engines(*Bold represents the Distributed RDF
Engines)

1 SELECT * WHERE SELECT * WHERE SELECT * WHERE SELECT *
WHERE

2 { { { {
3 ?S ?P1 ?O1. ?S ?P1 ?O. ?S1 ?P1 ?O. ?O ?P1 ?S.
4 ?S ?P3 ?O3 ?O ?P3 ?O3 ?S3 ?P3 ?O ?S ?P3 ?S3
5 } } } }
6
7 SELECT * WHERE SELECT * WHERE SELECT * WHERE SELECT * WHERE
8 { { { {
9 ?S ?P1 ?O1. ?S ?P1 ?O. ?S1 ?P1 ?O. ?S ?P1 ?O.

10 ?S ?P2 ?O2 ?O ?P2 ?O2 ?S2 ?P2 ?O. ?S ?P2 ?O.
11 } } } ?S ?P3 ?O.
12 ?S ?P4 ?O
13 }

Listing 1: Query examples

3.1 Graph Modeling

Since both techniques are based on query workload, we assume that we are given a query workload Q =
{q1, . . . , qn} of SPARQL queries. Ideally, the query workload Q contains real-world queries posted by the users
of the RDF dataset, which can be collected from the query log of the running system. However, real user queries
might not be available. In this case the query workload can be either estimated from queries in applications
accessing the RDF data or synthetically generated with the help of the domain experts of the given RDF dataset
that needs to be partitioned.

For a given workload Q = {q1, . . . , qn}, we create a predicates co-occurrence list L = {e1, . . . , em} where
each entry is a tuple e =< p1, p2, c >, with p1, p2 two different predicates used in the triple patterns of SPARQL
queries in the given workload, and c is the co-occurrence count, i.e. the number of queries in which both p1 and
p2 are co-occurred. By looking at our query examples given in listing 1, the predicates p1, and p2 co-occurred in
a total of 4 queries, thus one entry of the L will be < p1, p2, 4 >. For the sake of simplicity, the corresponding
predicate-to-predicate co-occurrence list for our query examples is shown in Figure 3a. Finally, we model the
list L as a weighted graph, such that for a given list entry e =< p1, p2, c >, we create two nodes (one each for
p1 and p2) that are connected by a link with weight equalling c. The corresponding weighted graph is shown in
figure 3b.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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P1 P2 Co-occurrences

p1 p2 4

p1 p3 5

p1 p4 1

p2 p3 1

p2 p4 1

p3 p4 1

(a) Predicate co-occurrences

e1

e2  4

e3

e5

e4
e6   1

5

1

1

1

p1

p2 p4

p3

(b) Weighted graph of the predicate co-
occurrences

Figure 3: The predicate co-occurrences table and corresponding weighted graph for the example queries given in
Listing 1.

Algorithm 1: Adapted Markov Clustering

1 MCL(G, e, r ,n) /* Input: Weighted predicates graph G, sequence of powers e = 2,
sequence of inflation parameters r = 0.001, and n number of required clusters */

2 T ∈ Rp×p = GetTransitionMatrix(G) ;
3 T ∈ Rp×p = Normalize(T ) ;
4 while ∃c∈{1,...,p}(

∑p
r=1 Tr,c) > 1 do

5 T := (T )e // Expend
6 T := Inflate(r, Power(e, T )) // Inflate

7 end
8 return getClusters(T, n) /* get n clusters from matrix */

3.2 Graph Clustering

We propose two clustering algorithms to generate clusters of predicates from the weighted predicates graph
generated in the previous section.

PCM Clustering. Algorithm 1 shows the predicate clustering using a modified version of the well-known
Markov2 clustering. For the input weighted predicates graph G, a transition matrix T is created which is then
normalized (Lines 2-3 of algorithm 1). A transition matrix is basically a matrix representation of a weighted
graph. Since our weighted graph shown in Figure 3b has four nodes, a 4 × 4 (one row and column for each
predicate vertex) matrix will be created. The corresponding transition matrix is shown in Figure 4. The
normalization of the matrix is done by dividing each element of a particular column by the sum of all the
elements in that column. The normalized matrix is shown in Figure 4.

The next two steps are the standard expansion and inflation of the Markov clustering, applied on the
normalized transition matrix. These steps are continued until there is no column in the transition matrix with a
total sum greater than 1 (Lines 4-8 of algorithm 1). The expansion is a simple self-multiplication of the matrix,
raised to the power of input parameter e. The inflation matrix results from re-scaling each of the columns of T
with power coefficient r. We encourage readers to have a look at the standard Markov clustering algorithm for
further details and effects of these steps.

The last step is to interpret the resulting transition matrix to discover n clusters. This is achieved by
2Markov clustering: https://micans.org/mcl/

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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0        4           1         5
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Figure 5: Predicate clusters created by the proposed techniques for the example RDF dataset given in Figure 1a.
Clusters are highlighted in different colors)

sequentially adding non-zero row-wise values of matrix T to a cluster. For example, in our final matrix shown in
Figure 4, the first non-zero row-wise value is 0.66 at position T1,2. Thus, the corresponding predicates, i.e. p1, p2,
will be added into a single cluster. The next non-zero row-wise value is at position T1,3, which corresponds to
predicates p1, p3. Since p1 already exists, only p3 will be added into the cluster. Finally, p4 will be added. Now
our cluster contains a sequential list of predicates {p1, p2, p3, p4}. Since we need n partitions, we simply divide
the total elements from the cluster by n number of required partitions to get the number of elements from the
sequential list of elements to be combined into a single partition. In our case, the number of elements is 4 while
desired partitions are 3. Thus, we divide 4/3 and assign the first two elements (i.e., p1, p2) to partition 1 and the
next element (i.e., p3) into partition 2 and the final element into partition 3. The final cluster of predicates is
shown in figure 5a. Please note that it is possible that there exist many predicates in the RDF dataset that are not
used in the query workload. In that case we assign a single separate partition for all unused predicates.

PCG Clustering. Algorithm 2 shows the predicate clustering using the proposed greedy clustering method.
The first step is to calculate the expected size (in terms of the number of triples) of each partition. The next step
is to obtain all edges between predicates according to their increasing order of weights. For the graph given in
Figure 3b, our sorted list of edges will be E = {e1, e2, e3, e4, e5, e6}. The next step is to loop through each edge
ej ∈ E and get the corresponding predicates that are connected by the given edge ej (Lines 6-7 of algorithm 2).
We then get the combined count of the triples for predicates pk and pl from the input dataset D. If the current
size of the cluster ci is less than the threshold t, both predicates are added into the same cluster ci. However, if
the size of the current cluster exceeds the threshold, a new cluster is created for the upcoming predicates (Lines
8-14 of algorithm 2). The final three clusters of predicates are shown in figure 5b. Please note that, as with PCM,
it is possible that there exist many predicates in the RDF dataset that are not used in the query workload. In that
case, we assign a single separate partition for all unused predicates.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Algorithm 2: Greedy Clustering

1 PCG(G, D, n) /* Input: Weighted predicates graph G, Dataset D to be partitioned, n
number of required clusters */

2 t = |D|/n− 1 ; // Size of a partition
3 E = getSortedEdges(G) ; /* Obtain all edges between the predicates according to their

weight */
4 C = {c1 . . . cn} ; // Required clusters
5 i = 1 ;
6 forall ej ∈ E do
7 P (pk, pl) = getNodesPair(G, ej) /* Obtain both nodes (predicates) that are connected

by the edge ei */
8 T = getTriplesCount(D, P (pk, pl)) /* get the combined count of the triples for

predicates pk and pl from dataset D */
9 if |ci| < t /* if size of triples in cluster ci is less than the threshold t */

10 then
11 ci ← {pk, pl} ; // assign both predicates to cluster
12 else
13 i = i + 1 ; // move to next cluster
14 end
15 end
16 return C ; // Clusters

3.3 Assigning Clusters to Partitions

The clustering algorithms explained in the previous steps give n clusters of predicates. In the last step, triples
from a given RDF dataset D are distributed into partitions according to the aforementioned predicate-based
partitions: for each predicate p in a specific cluster ci, assign all the triples with predicate p ∈ D into the same
partition. Figure 6a and 6b show the final partitions created by both of the proposed techniques. Please note that
these partitions are different from all the techniques shown in Figure 1b.

3.4 Dynamic Data Distribution

Now we explain the dynamic data distribution according to the new workload. We propose to collect a one week
query log and make a new data distribution, which better reflects the new workload. We follow the following
steps to perform this task.

• We get a querying workload W1 and perform predicate-clustering using PCM or PCG. The corresponding
cluster of predicates C1 is then assigned to physical partitions as discussed before.

• The triplestore is then used in practice for one week more and the new workload W2 is collected. We
perform again the predicate-clustering C2 using PCM or PCG using the new workload.

• We compare C1 and C2 for any changes, i.e., we check if predicate clusters are changed in the C2 w.r.t
C1. If there occurs no change, we do not make any dynamic data distribution among physical partitions.
If there exist changes, we carry on the required changes (insertion or deletion of triples) in the current
physical partitions to exactly reflect the C2.

• We repeat these steps every week or every two weeks, depending on the workload querying frequency.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 6: Final three partitions created by the proposed techniques for the example RDF dataset given in
Figure 1a. Partitions are highlighted in different colors)

4 Evaluation

4.1 Evaluation Setup

We have exactly reused the evaluation setup discussed in [1] and D3.2. The reasons for choosing this evaluation
setup are two-fold: (1) since our proposed techniques require query workloads, we wanted to use real-world
query workloads (i.e., collected from public SPARQL endpoints of real-world RDF datasets), and real-world
RDF benchmarks, (2) we wanted our results to be comparable with the results presented in [1].

Datasets. In this initial report, we only used Semantic Web Dog Food (SWDF) for partitioning. We chose this
dataset because it is small and can be used to get a quick look for the initial performance. In the final deliverable,
we will also use DBpedia 3.5.1 for partitioning. The real-world query logs for the SWDF dataset are freely
available from LSQ dataset [8].

Workloads (train) and Benchmark (test) Queries. With the help of ten queries such as listing 2, we fetched
SELECT BGP-only queries of SWDF ordered by execution time stamp, and divided them by 10 parts of 49
queries. Each consecutive pair of these parts was used as a pair of train and test queries in one experiment. In
each experiment first part was used for partitioning and distributing, and the second part was used for testing. So
we used just BGP-only queries for partitioning and benchmarking, because the selected partitioning environment
for this initial deliverable does not support fully-featured queries. SWDF BGP-only is the SWDF benchmark
containing only single BGP queries; the other SPARQL features such as OPTIONAL, UNION etc. are not used.

Partitioning Environments. In this initial report, we only used a clustered or distributed RDF storage en-
vironment, where the given dataset is distributed among n data nodes of a clustered triplestore. The second
partitioning environment, i.e., a purely federated environment, in which the dataset is distributed among multiple
SPARQL endpoints that are physically separated from each other and a federation engine is used to perform the
query processing task, will be used in D3.4. We used Koral [3] distributed RDF engines for the first type of
partitioning environment. We chose Koral due to its flexibility in choosing different partitioning methods for
data distribution among data nodes. In addition, it was previously used in [1].

Number of Partitions. Inspired by D3.2, [1] and [7], we generated 10 partitions of the selected datasets.
Therefore, 10 slaves were created in Koral, each one responsible for one partition.

Selected RDF Graph Partitioning Technique. We used the PCM clustering algorithm because it has proven to
be performing better than PCG in terms of clustering generation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1 # fetch the second 49 queries of the SELECT BGP -only -queries of
Semantic Web Dog Food ordered by timestamps

2
3 #****without limit results =497
4
5 Prefix lsq: <http://lsq.aksw.org/vocab#>
6 PREFIX prov: <http://www.w3.org/ns/prov#>
7
8 SELECT Distinct ?qId ?tps ?joinVertices ?rs ?rt ?meanJoinVertexDegree

#?text ?timeStamp
9

10 WHERE
11 {
12
13 ?qId lsq:text ?text .
14 ?qId lsq:hasRemoteExec ?re .
15 ?re prov:atTime ?timeStamp .
16
17 ?qId lsq:hasStructuralFeatures ?sf .
18 ?sf lsq:joinVertexCount ?projVar .
19 ?sf lsq:joinVertexCount ?joinVertices .
20 ?sf lsq:tpCount ?tps .
21 ?sf lsq:joinVertexDegreeMean ?meanJoinVertexDegree .
22 ?sf lsq:usesFeature lsq:Select .
23
24 ?qId lsq:hasLocalExec ?le .
25 ?le lsq:hasQueryExec ?qe .
26 ?qe lsq:resultCount ?rs.
27 ?qe lsq:evalDuration ?rt.
28
29
30 Filter (?rs > 0 && ?rs < 20000000 && ?tps > 1) #queries which have

some result and more than 1 triple pattern
31
32 #bgp -only -filter
33 FILTER (!regex(?text, "(lsq:fn-if|agg -group_concat|Aggregators|AltPath|

Bind|Distinct|Filter|Functions|GroupBy|InversePath|Limit|LinkPath|
Minus|NamedGraph|Offset|Optional|OrderBy|SeqPath|Service|SubQuery|
TriplePath|Union|Values|ZeroOrMorePath|ZeroOrOnePath|agg -count|agg -
min|agg -sample|agg -sum|fn-and|fn-bound|fn-contains|fn-day|fn-eq|fn-
exists|fn-function|fn-ge|fn-gt|fn-in|fn-isIRI|fn-isLiteral|fn-lang|
fn-langMatches|fn-lcase|fn-le|fn-lt|fn-month|fn-ne|fn-not|fn-
notexists|fn-notin|fn-now|fn-or|fn-regex|fn-sameTerm|fn-str|fn-
strstarts|fn-substr|fn-subtract|fn-year|oneOrMorePath|fn-abs|fn-
isBlank|fn-multiply|agg -max|Describe|fn-add|fn-datatype|fn-concat|
fn-strends|agg -avg|Ask|Construct|fn-strafter|fn-strlen|fn-replace|
fn-ucase|fn-encode_for_uri|Reduced|fn-divide|fn-round|fn-isNumeric|
fn-strbefore|fn-strlang|fn-seconds|fn-coalesce|fn-strdt|fn-floor|fn
-hours|fn-iri|fn-minutes|lsq:Group|lsq:TriplePattern|count| as )",
"i"))

34 }
35
36 order by ?timeStamp
37 LIMIT 49 OFFSET 50

Listing 2: Query for fetching train and test queries (490 queries- 10 parts of 49 queries )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Performance Measures. We used Queries per Second (QpS), and the average query execution time to compare
the performance of the proposed dynamic data exchange. We used a six minutes timeout for query execution of
each query.

Hardware and Software Specifications. The hardware and software configuration for our techniques is the
same as [1], i.e., all our experiments are executed on a Ubuntu-based machine with intel i7-11370H 3.30 GHz, 4
cores and 32GB of RAM. We conducted our experiments on local copies of Tenforce / Virtuoso (version 7.2.5)
SPARQL endpoints. We used default configurations for Koral, but the slaves were changed from 2 to 10.
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Figure 7: Queries per Second (QpS) with sequential one week querying workload (Ex1-Ex5).

4.2 Evaluation Results

The goal of our evaluation is to show how the query runtime performance is improved with dynamic data
partitioning.

Query per Second (QpS). Figure 7 shows a comparison of the QpS values for 5 querying workloads. The higher
the QpS the better the query runtime performance. Each query load is before its benchmark queries. The Ex1
represents the initial workload and benchmark pair (each of 49 queries). Ex2 is the next pair of workload and
benchmark and so on. We did data distribution according to workload queries of Ex1 and executed benchmark
queries of Ex1 and reported QpS. We follow the same process for Ex2 until Ex5. We can clearly see the QpS (in

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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general) is improved with dynamic data distribution while going from Ex1 to Ex5. This shows the effectiveness
of the proposed dynamic data distribution. However, we also see the increase in QpS is not linear. For example
the QpS of Ex2 is better than Ex3. The possible reason is that the selected SWDF dataset is very small. There
are not many big changes in the querying workload as well. We believe experiments on DBpedia will give a
more clear picture. However, the initial results are sufficiently satisfactory.

Average Query Runtime. Figure 8 shows a comparison of the average query runtime for the same 5 querying
workloads. The smaller the runtime the better the query execution performance. Again, the result suggests
that query runtime is decreased with dynamic data distribution while going from Ex1 to Ex5. This shows the
effectiveness of the proposed dynamic data distribution.
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Figure 8: Average query runtime with sequential one week querying workload (Ex1-Ex5).

5 Conclusion and Future Work

In this deliverable, we presented the initial report on dynamic data exchange. We made use of the 5 querying
workloads from SWDF and did dynamic data shuffling according to the new workloads. We used QpS and the
average query runtime as two performance measures. The results clearly show the effectiveness of the proposed
dynamic data partitioning. However, further detailed experiments are needed to draw solid conclusions.
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In the future, we plan to use more datasets and different partitioning environments to test the proposed
dynamic data exchange techniques.
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