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1 Introduction

Answering complex queries on the Web of data often requires merging partial results contained across different
data sources. The optimization of engines that support this type of queries, called federated query engines, is
thus of central importance for the efficient and scalable deployment of Semantic Web technologies [7]. Two
challenges must be addressed when optimizing federated query processing.

The first is the efficient source selection, i.e., identifying the set of relevant also called capable sources
that can answer part of the given query. For a given query, an optimized selection of sources is one of the key
steps towards the generation of efficient query plans [8]. A poor source selection can lead to increases of the
overall query processing time [8]. The second is the generation of efficient query plans: For a given query, there
are most likely several possible plans that a federation system may consider executing to gather results. These
plans have different costs in terms of the amount of resources they necessitate and the overall time necessary to
execute them. Detecting the most cost-efficient query plan for a given query is hence one of the key challenges
in federated query processing. This report targets the first challenge.

To address the first challenge, most SPARQL query federation approaches [2, 3, 11, 9] rely on a triple
pattern-wise source selection (TPWSS) to optimize their source selection. The goal of the TPWSS is to identify
the set of sources that are relevant for each individual triple pattern of a query [9]. However, it is possible that
a relevant source does not contribute (formally defined in section 5.1) to the final result set of a query. This
is because the results from a particular data source can be excluded after performing joins with the results of
other triple patterns contained in the same query. The join-aware TPWSS strategy has been shown to yield great
improvement [1, 8].

In this deliverable, we present a trie-based source selection approach which is a join-aware approach
to TPWSS based on common URI prefixes. The proposed source selection algorithm is based on labelled
hypergraphs [8], which makes use of data summaries for SPARQL endpoints based on most common prefixes for
URIs. We devise a pruning algorithm that allows discarding irrelevant sources based on common prefixes used in
joins. We compared the efficiency of the proposed source selection approach with the source selection approaches
used in state-of-the-art federation engines ANAPSID [1], SemaGrow [2], SPLENDID [3], HiBISCuS [8], and
FedX [11]. Our results show that we outperform these engines by (a) reducing the number of sources selected
(without losing recall) and by (b) reducing the source selection time on the majority of the FedBench [10]
queries. Our results on the more complex queries from LargeRDFBench [6] confirm the results on FedBench.

2 Related Work

FedX [11], SPLENDID [3], ANAPSID [1], SemaGrow [2], ODYSSEY [4], LUSAIL [5] etc. are examples
of state-of-the-art SPARQL federation engines. A more exhaustive overview of these systems can be found
in [7]. However, they do not consider the skew distribution of subjects and objects across predicates. Our
proposed approach is most closely related to HiBISCuS [8] in terms of source selection. HiBISCuS makes use
of the different URIs authorities' to prune irrelevant sources during the source selection. While HiBISCuS can
significantly remove irrelevant sources [8], it fails to prune those sources which share the same URI authority.
For example, all the Bio2RDF sources contains the same URI authority. We address the drawback of HiBISCuS
by proposing a trie-based source selection approach. By moving away from authorities, our approach is flexible
enough to distinguish between URIs from different datasets that come from the same namespace (e.g., as in
Bi02RDF).

'URI authority: https://tools.ietf.org/html/rfc3986#section-3.2
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3 Preliminaries

As the basis of our query federation scenario, we assume that the federation consists of SPARQL endpoints.
Formally, we capture this federation as a finite set D whose elements denote SPARQL endpoints, which we
simply refer to as data sources. For each such data source D € D, we write G(D) to denote the underlying
RDF graph exposed by D. Hence, when requesting data source D to execute a SPARQL query @), we expect
that the result returned by D is the set [Q] ¢ (p)-

4 Data Summaries

The basis of the our approach is an index that stores a dedicated data summary for each of the data sources in the
federation. The innovation of these data summaries is twofold: First, they take into account the skew distribution
of subjects and objects per predicate in each data source. Second, they contain prefixes of URIs that have been
constructed such that our source selection approach (cf. Section 5) can use them to prune irrelevant data sources
more effectively than the state-of-the-art approaches. This section describes these two aspects of the proposed
data summaries (beginning with the second) and, thereafter, defines the statistics captured by these summaries.

As mentioned in Section 2, HiBISCuS fails to prune the data sources that share the same URI authority.
We overcomes this problem by using source-specific sets of strings that many URIs in a data source begin
with (hence, these strings are prefixes of the URI strings). These common URI prefixes are determined as
follows: Let p be a set of URIs for which we want to find the most common prefixes; in particular, such a
set p shall be all subject or all object URIs with a given predicate in a data source. We begin by adding all the
URIs in p to a temporary trie data structure (also called prefix tree). While we use a character-by-character
insertion in our implementation, we present a word-by-word insertion for the sake of clarity and space in the
paper. For instance, inserting the URIs wiwiss.fu-berlin.de/drugbank/resource/drugs/DB00201 and wiwiss.fu-
berlin.de/drugbank/resource/references/1002129 from DrugBank leads to the trie shown Figure 1a. We say
that a node in the trie is a common-prefix end node if (1) it is not the root node and (2) the branching factor of
the node is higher than a pre-set threshold. For example, by using a threshold of 1, the node resource would
be a common-prefix end node in Figure 1a. After populating the trie from p and marking all common-prefix
end nodes, we can now compute the set of all common URI prefixes for p by simply traversing the trie and
concatenating each path from the root to one of the marked nodes. In our example, given the branching factor
threshold of 1, the only common prefix is wiwiss.fu-berlin.de/drugbank/resource/. In the end we delete the
temporary trie.

Frequency of resources (log scale) §

@
&

mmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmm

Resources sorted in decreasong order of their frequencies

(a) Trie of URIs (b) Construction of buckets in skew distribution: Resources in brown go
into b, black into b1, and blue into b2.

Figure 1: Construction of Trie or prefix tree and buckets

To take into account the skew distribution of subjects and objects per predicate in a data source, we retrieve
the frequencies of all the subject/object resources that appear with each of the predicates and orders them in
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ascending order w.r.t. these frequencies. We then compute the differences in the frequencies between each pair
of consecutive resources (e.g., subtract the second ranked frequency from the first, and third from the second,
and so on) in the ordered list of subjects/objects. An example skew distribution of the subject frequencies of
the DBpedia2015-10 property foaf:name is given in Figure 1b. We use this distribution to map resources to
one of three mutually disjoint buckets—b0, b1, and b2—which we summarize with a decreasing amount of
detail. Informally, we construct the buckets such that b0 contains the high-frequency resources (that appear most
often with the predicate in question), b1 contains the middle-frequency resources, and b2 is for the long tail of
low-frequency resources. The choice of three buckets was chosen according to the level of details we are storing.
In b0 we store resources along with their frequencies. In bl we store resources along a single avg. frequency of
all the resources in the bucket. In b2, we only store avg. frequency. In this way we care the skew distribution of
the resources while keeping the resulting index smaller for fast lookup.

The cutting point xy.1 for bucket by is formally defined as follows. Let f,, be the frequency for a
resource 1, where n = {1, ..., N'}, the sequence of the frequencies is expressed as a,, = { f1, ..., fn'} such that
fn = fne1 Vn < N. We find the cutting points as:

Tp+1 = min argmax  Op
ne{zr+1,N—1}

where §,, = a,, — a,+1 is the sequence of the drops and the first cutting point xg is zero by definition. In
other words, we iteratively look for the first largest drop. The x1th frequency is included in bucket by. In
our implementation, we force z; > 10, which means the first 10 resources are always assigned to b0 (e.g., see
Figure 1b). The maximal number of resources in b0 and b1 is limited to 100 to keep our index small enough for
fast index lookup during source selection and query planning.’

We now define the summarization of the buckets: Informally, for each of the resources in bucket b0, we
index it individually together with its corresponding frequency. The resources in bl are indexed individually
along with their average frequency across all resources in b1, and for the long-tail resources in b2 we only
record the average selectivity w.r.t. the predicate (i.e., without storing the individual resources). Formally,
we capture these summaries by the following notion of capabilities. Given a data source D € D, let p be
a predicate used in the data of D (i.e., p € {p'| (s, p’0') € G(D)}). Moreover, let sbjs(p, D), respectively
objs(p, D), be the set of subjects, respectively objects, in all triples in D that have p as predicate, and let the sets
sb0, sbl, sb2 C sbjs(p, D) and 0b0, ob1,0b2 C objs(p, D) represent the corresponding three subject buckets
and object buckets, respectively (hence, sb0—sb2 are pairwise disjoint, and so are 0b0—0b2). We define the
p-specific capability of D as a tuple that consists of the following elements:

1. The map b0Sbjs associates each subject resource s € sb0 with a corresp. cardinality b0Sbjs(s) =

[{(s",p,0') € G(D)|s'= s and p' = p}|.

2. The map b0Objs associates each object resource o € 0b0 with a corresp. cardinality b00bjs(0) =
|{sp0 (D)|0’:oandp’:p}’.

3. In b1Sbjs = (sbl,c), c is the average cardinality in the corresp. bucket bl, ie., ¢ = \séu
Seesnt|{(si D, 0) € G(D) | s'= s and p' = p}|.

4. In b10bjs = (obl,c), c is the average cardinality in the corresp. bucket bl, ie., ¢ = \0i1|

S ocont [{(shD,0) € G(D)| o' = o and p’ = p}|.

5. sbjPrefiz(p, D) is a set of common URI prefixes computed for the set sbjs(p, D) of URIs (by using the
trie data structure as described above).

“We performed various experiments and these values turned out to be the most suitable.
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ﬁpreﬁx ds:<http://aksw.org/CostFed/> .

30| 1

31 |#Overall dataset statistics
ds:totalSbj 20785 ;

%3| ds:totalObj 90039 ;

34 ds:totalTriples 522775 ;

1) I
2 a ds:Service ; |
3 ds:url <hllp //drugbank. endpoint.url/sparql> ; |
4| #Predicate based statistics |
51 ds: capablllty |
01 I
71 redicate db:drugCategory ; |
8 gOS bjs |
9 [ ds:subject db:DBO01075; ds:card 11 ], |
10 [ ds:subject db:DB00563; ds:card 11 ], |
11 [ ds:subject db:DB00424; ds:card 9 ], |
12 [ ds:subject db:DB00668; ds:card 7 | |
13 [ ds:subject db:DB00466; ds:card 7 ] |
14 ds:b1Sbjs |
15 db:DB00136, db:DB00169, db:DB00153 ; |
16 ) ds:blSbjsAvgCard 6 ; |
17 ds : b0Objs |
18| [ ds:object db:antineoplasticAgents; ds:card 158 ], |
19 [ ds:object db:enzymelnhibitors; ds:card 131 |, |
20 [ ds:object db:antih ]fertensiveAgents; ds:card 107], |
21 [ ds:object db:vasodilatorAgents; ds:card 62 IR |
22 ds:b10Objs |
23 db: micronutrient , db:antifungalAgents ; |
24 ds: blObJsAngard 45 |
25 ds:sbjPrefix db:resource/drugs/DB0 ; |
26| ds: b2 vgSS 5.321979776476849E-4 ; |
27 ds: Prefix db:resource/dru category/ ; |
28| ds: [{ngS 0 00171232876712 2876 |
29| ds: # No. of triples |

|

|

|

|

|

Listing 1: Sample Proposed index.

6. objPrefiz(p, D) is a set of common URI prefixes computed for objs(p, D).
7. avgSS(p, D) is the average subject selectivity of p in D considering only the corresponding bucket b2;
i.e., avgSS(p, D) = 1/|sb2|.

8. avgOS(p, D) is the average object selectivity of p in D considering only the corresponding bucket b2;
i.e., avgOS(p, D) = 1/|0b2|.

9. T(p, D) is the total number of triples with predicate p in D.

Note that the total number of capabilities that we indexes for a source D is equal to the number of distinct
predicates in D. However, the predicate rdf:type is treated in a special way. That is, the rdf:type-specific capability
of any source D € D does not store the set objPrefixz(rdf:type, D) of common object prefixes, but instead it
stores the set of all distinct class URIs in D, i.e., the set {o| (s, rdftype,0) € G(D)}. The rationale of this
choice is that the set of distinct classes used in a source D is usually a small fraction of the set of all resources
in D. Moreover, triple patterns with predicate rdf:type are commonly used in SPARQL queries. Thus, by storing
the complete class URIs instead of the respective prefixes, we can potentially perform a more accurate source
selection.

For each data source D € D, we also stores the overall number of distinct subjects ¢.S(D), the overall
number of distinct objects tO(D), and the overall size tT'(D) of G(D). An excerpt of a data summary is given
Listing 1. Most of the statistics in our data summaries can be obtained by simply sending SPARQL queries to
the underlying SPARQL endpoints. Any later updates in the data sources do not require the complete index
update. Rather, we only need to update the specific set of capabilities where changes are made. We can perform
an index update on a specified point of time as well as on a regular interval.

3We do not consider literal object values for objPrefiz (p, D) because, in general, literals do not share longer common prefixes and
we want to keep the index small.
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5 Source Selection

5.1 Foundations

As a foundation of our source selection approach we represent any basic graph pattern (BGP) of a given SPARQL
query as some form of a directed hypergraph. In general, every edge in a directed hypergraph is a pair of sets of
vertexes (rather than a pair of two single vertexes as in an ordinary digraph). In our specific case, every hyperedge
captures a triple pattern; to this end, the set of source vertexes of such an edge is a singleton set (containing a
vertex for the subject of the triple pattern) and the target vertexes are given as a two-vertex sequence (for the
predicate and the object of the triple pattern). For instance, consider the query in Figure 2a whose hypergraph is
illustrated in Figure 3a (ignore the edge labels for the moment). Note that, in contrast to the commonly used join
graph representation of BGPs in which each triple pattern is an ordinary directed edge from a subject node to
an object node [12], our hypergraph-based representation contains nodes for all three components of the triple
patterns. As a result, we can capture joins that involve predicates of triple patterns. Formally, our hypergraph
representation is defined as follows.

Definition 1 (Hypergraph of a BGP) The hypergraph representation of a BGP B is a directed hypergraph
HG = (V, E) whose vertexes are all the components of all triple patterns in B, i.e., V = U(87p70)63{5,p, o},
and that contains a hyperedge (S,T) € E for every triple pattern (s,p,0) € B such that S = {s} and

T = (p,o0).

Note that, given a hyperedge e = (S, T") as per Definition 1, since 7 is a (two-vertex) sequence (instead
of a set), we may reconstruct the triple pattern (s, p,0) € B from which the edge was constructed. Hereafter,
we denote this triple pattern by ¢p(e). Then, given the hypergraph HG = (V, E) of a BGP B, we have
that B = {tp(e)|e € E}. For every vertex v € V in such a hypergraph we write Ei,(v) and Eoui(v)
to denote the set of incoming and outgoing edges, respectively; i.e., Eiy(v) = {(S,T) € E|v € T} and
Eou(v) ={(S,T)eE|veS}. If |Ei(v)| + | Eout(v)| > 1, we call v a join vertex.

TT ?drug, ?title
1 [SELECT 7drug ?title WHERE | /(ng)\
2 [?drug db:drugCategory dbc:micronutrient. B9 Rt )—(ct:EBl ; do, KEGG, SWDF}
3| # R(tp1)={DrugBank} ) Ps) = , Jamendo, )
4 |?drug db:casRegistryNumber ?id. /(23)\ ) C(tps): 121158
5| # R(tp2)={DrugBANK} X Pa
6 |?keggDrug rdf:type kegg:Drug. 47338$ Egm;—lgczhailil KEGG}
7| # R(tps)=(KEGG) _ b4 tn, Cltoy):
8 |?keggDrug bio2rdf:xRef ?id. /(47)\ R(tps) = {KEGG}
9| # R(tpa)={ChEBI, KEGG) 0, Cltp,): 8117
10 [?keggDrug purl:title ?title . R{tp,) = 2
p,) = {DrugBank} -

11 | # R(tps)={ChEBI, Jamendo, KEGG, SWDF}} C(tpi):48 (;(tt:z)) 22(élil)(;ugBank}

,):

(a) Triple pattern-wise relevant sources (b) Unoptimized left-deep plan

Figure 2: Motivating Example: FedBench LS6 query. C(tp) represents the cardinality of triple pattern tp.

During its hypergraph-based source selection process, we manage a mapping A that labels each hyperedge e
with a set A(e) C D of data sources (i.e., SPARQL endpoints). These are the sources selected to evaluate the
triple pattern ¢p(e) of the hyperedge. In the initial stage of the process, such a label shall consist of all the
sources that contain at least one triple that matches the triple pattern. We call each of these sources relevant (or
capable) for the triple pattern. More specifically, a data source D € D is relevant for a triple pattern tp if the
result of evaluating ¢p at D is nonempty; that is, [tp]c(py 7# 0. Hereafter, let R(tp) C D denote the set of all
relevant sources for tp.

Note that this notion of relevance focuses on each triple pattern independently. As a consequence, there
may be a source (or multiple) that, even if relevant for a triple pattern of a query, the result for that triple pattern
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from this source cannot be joined with the results for the rest of the query and, thus, does not contribute to the
overall result of the whole query. Therefore, we introduce another, more restrictive notion of relevance that
covers only the sources whose results contribute to the overall query result. That is, a data source D € D is
said to contribute to a SPARQL query @ if there exists a triple pattern ¢p in () and a solution mapping u in
the result of @) over the federation D such that p(¢p) is a triple that is contained in G(D). Hereafter, for every
triple pattern ¢p of a SPARQL query (), we write Cg(tp) to denote the set of all data sources (in D) that are
relevant for ¢p and contribute to @Q; hence, Cg(tp) C R(tp). Then, the problem statement underlying the source
selection of the proposed approach is given as follows:

Definition 2 (Our Source Selection Problem) Let () be a SPARQL query that consists of n BGPs. Given a
set DHG = {(V1, E1), ..., (Vyn, En)} of hypergraphs that represent these BGPs, determine an edge labeling
A (EyU---U Ey) — 2P such that for each hyperedge e € (E1 U - - - U Ey,) it holds that A(e) = Cq(tp(e)).

5.2 Source Selection Algorithm

Our source selection comprises two steps: Given a query (), we first determine an initial edge labeling for the
hypergraphs of all the BGPs of ; i.e., we compute an initial A(e) for every e € E; in each (V;, E;) € DHG. In
a second step, we prune the labels of the hyperedges assigned in the first step. The first step* works as follows:
For hyperedges of triple patterns with unbound subject, predicate, and object (i.e., tp =<7s, 7p, 7o >) we select
all sources in D as relevant. For triple patterns with predicate rdf: type and bound object, an index lookup is
performed and all sources with matching capabilities are selected. For triple patterns with either bound subject
or bound object or common predicate (i.e., appears in more than 1/3 of D), we perform an ASK operation; that is,
an ASK query with the given triple pattern is sent to each of the sources in D, respectively, and the sources that
return true are selected as relevant sources for the triple pattern. The results of the ASK operations are stored in
a cache for future lookup. Figure 3a shows the resulting hyperedge labeling of the example query.

Pruning approach

After labeling the edges of the hypergraphs, we prune irrelevant sources from the labels by using the source-
pruning algorithm shown in Algorithm 1. The intuition behind our pruning approach is that knowing which
stored prefixes are relevant to answer a query can be used to discard triple pattern-wise (TPW) selected sources
that will not contribute to the final result set of the query. Our algorithm takes the set of all labeled hypergraphs
as input and prunes labels of all hyperedges that are either incoming or outgoing edges of a join node. Note that
our approach deals with each hypergraph (V;, E;) € DHG of the query separately (Line 1 of Algorithm 1). For
each node v € Vj that is a join node, we first retrieve the sets (1) SPrefix of the subject prefixes contained in
the elements of the label of each outgoing edge of v (Lines 2—7 of Algorithm 1) and (2) O Pre fix of the object
prefixes contained in the elements of the label of each ingoing edge of v (Lines 8—10 of Algorithm 1)°.

Now we merge these two sets to the set P (set of sets) of all prefixes (Line 11 of Algorithm 1). Next, we
plot all of the prefixes of P into a trie data structure. For each prefix p in P we then check whether p ends at
a child node of the trie. If a prefix does not end at a child node, then we get all of the paths from the prefix
last node (say n) to each leaf of n. These new paths (i.e., prefixes) resulted from p are then replaced in the
prefix (Lines 12-22 of Algorithm 1). The intersection [ = (ﬂpi cp pi) of these element sets is then computed.
Finally, we recompute the label of each hyperedge e that is connected to v. To this end, we compute the subset

“Due to space limitation, the pseudo code of this algorithm can be found (along with a description) in the supplementary material at
https://goo.gl/otj9kq.

>We encourage readers to refer to https://goo.gl/JIby23 during the subsequent steps of the pruning algorithm. The file contains
a running example of the pruning algorithm.
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Algorithm 1: Proposed source pruning algorithm

input : DHG; /* set of hypergraphs that represent the BGPs of a query x/
output: DHG ; /* set of hypergraphs that represent the BGPs of a query with prunned sources */
1 foreach hypergraph (V;, E;) € DHG do
2 foreach hypergraph vertex v € V; do
3 if v is a join vertex then
4 SPrefix = 0; OPrefiz = 0;
5 foreach hyperedge e € E ¢ (v) do
6 Prefix = SPrefixz U {subjectPrefixes(e)} ; /* subjectPrefixes(e) is a function to get all subject prefixes from
index for the triple pattern represented by the hyperedge e. */
7 end
8 foreach hyperedge e € E;,, (v) do
9 |  OPrefix = OPrefix U {objectPrefixes(e)}
10 end
11 P = SPrefix concat OPrefix; /* merged set x/
12 Tr = getTrie(P) ; /* get Trie of all prefixes, no branching limit */
13 foreach prefix p € P do
14 if /isLeafPrefix(p,T'r) then /* prefix does not end at a leaf of Trie x/
15 C' = getAllChildPaths(p) ; /* get all paths from prefix last node n to each leaf of n */
16 A=10; /* to store all possible prefixes of a given prefix x/
17 foreach path c € C do
18 | A= AU p.concatenate(c) ;
19 end
20 P .replace(p,A) ; /* replace p with its all possible prefixes */
21 end
22 end
23 I=P.get(l); /* get first element of prefixes x/
24 foreach prefix p € P do
25 I=INnp; /* intersection of all elements of P x/
26 end
27 foreach hyperedge € € E;y, (v) U Eoyt(v) do
28 label = 0 ; /* variable for final label of e %/
29 foreach data source d; € \(e) do
30 if prefixes(d;) N I # () then
31 | label = label Ud; ;
32 end
33 end
34 A(e) = label
35 end
36 end
37 end
38 end

e TT ?drug, ?title
X,
® B

7 Ritp,) = {DrugBank) o @DrugBank EXCI@KEGG

/ (47) (32517)
R(tp,) = {DrugBank} \ \
C(tpl) 48 C(tpz) zzao C(tps) 8117 c(tp4) 73196 C(tps) 34146
- (b) Query plan

(a) DLH of Figure 2a query and source selection

Figure 3: Source selection and query plan for query given in Figure 2a. Bold red are the sources finally selected
after the pruning Algorithm 1.

of the previous label of e which is such that the set of prefixes of each of its elements is not disjoint with I (see
Lines 24 onwards of Algorithm 1). These are the only sources that will potentially contribute to the final result
set of the query. The sources that are finally selected after the pruning are shown in bold red in Figure 3a. We
are sure not to lose any recall by this operation because joins act in a conjunctive manner. Consequently, for a
data source D; in the initial label of a hyperedge, if the results of D; cannot be joined with the results of at least
one source of each of the other hyperedges, it is guaranteed that D; will not contribute to the final result set of
the query.
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6 Evaluation

6.1 Experimental Setup

We used FedBench [10] for our evaluation which comprises 25 queries, 14 of which (CD1-CD7, LS1-LS7) are
for SPARQL endpoint federation approaches (the other 11 queries (LD1-LD11) are for Linked Data federation
approaches [7]). Hence, we used all 14 SPARQL endpoint federation queries in our evaluation. In addition, we
used the Complex queries (C1-C10) from LargeRDFBench [6] to test performance on more complex queries.
These complex queries have more triple patterns (at least 8 vs. a maximum of 7 in FedBench), more join vertices
(3-6 vs. 1-5 in FedBench) and a higher mean join vertex degree (2-6 vs. 2-3 in FedBench). In addition, they
were designed to use more SPARQL clauses (especially, DISTINCT, LIMIT, FILTER and ORDER BY) that are
missing in the FedBench queries. Further details about the complex queries can be found at the aforementioned
LargeRDFBench project website.

Each of FedBench’s nine datasets was loaded into a separate physical Virtuoso 7.2 server, each of which
equipped with a 3.2GHz i7 processor, 32 GB RAM and a 500 GB hard disk. The client machine that ran the
experiments had the same specification. We conducted the experiments in a local network. Hence, the network
costs were negligible. Each query was executed 15 times and the results were averaged. We best choose 4 as trie
branching factor for the index construction. The query timeout was 20 min. We compared the selected engines
based on: (1) the total number of triple pattern-wise sources selected, (2) the total number of SPARQL ASK
requests submitted during the source selection, (3) the average source selection time, (4) the index/data summary
generation time (if applicable), and (5) index compression ratio.

6.2 Experimental Results

We first measured the compression ratio® achieved by each system. We achieve an index size of 9.5 MB for the
complete FedBench data dump (19.7 GB), leading to a high compression ratio of 99.99%. The other approaches
achieve similar compression ratios. Our index construction time is around 60 min for all of FedBench. ANAPSID
requires only 5 min while SPLENDID and SemaGrow need 110 min. HiBISCuS’s indexing runtime lies around
41 min.

More importantly, we analysed the results of the source selection and overall query runtime. We define
efficient source selection in terms of: (1) the total number of triple pattern-wise sources selected (#T), (2) the
total number of ASK requests (#A) used to obtain (1), and (3) the source selection time (ST). Table 1 shows the
results of these three metrics for the selected approaches. Overall, our approach is the most efficient source
selection approach w.r.t. all metrics. It selects the smallest #T, i.e., 70 for FedBench and 104 for Complex
queries (see the average/total values in Table 1). Similarly, it requires the smallest number of ASK queries during
the source selection along with the smallest source selection time. We outperform HiBISCuS w.r.t. source
selection time as our index is loaded as hash tables and addressed using sorted tables (HiBISCusS relies on a
Sesame model and SPARQL queries for lookup). It is important to mention that FedX, HiBISCUS, and our
proposed approach cache the results of ASK requests used during the source selection. Thus, they always perform
a cache lookup before sending an ASK request to the underlying SPARQL endpoint. The runtime results in
Table 1 are the results for the warm cache of these federation engines. We can clearly see that the join-aware
source selection approaches, i.e., our approach, ANAPSID, and HiBISCUS select around half (e.g., 70 for
our approach vs. 134 for FedX on FedBench) of the total #T selected by the non-join-aware source selection
federation engines. As mentioned before, such an overestimation of sources can be very costly (extra network
traffic, irrelevant intermediate results). The effect of such overestimation is even more critical while dealing with

8Compression ratio = (1 - index size/total data dump size).
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Table 1: Comparison of the federation engines in terms of total triple pattern-wise sources selected #T, total
number of SPARQL ASK requests #A, source selection time ST in msec, and average query runtime RT.
(ST*,RT* = FedX source selection time and query runtime with cold cache, respectively, TO = Time Out of 20
min, RE = Runtime Error, T/A = Total/Average, where Total is for #T, #A, and Average is ST, RT)

FedX ‘ SPLENDID ANAPSID SemaGrow Our Approach HiBISCuS
Qry #T | #A | ST* | ST #T | #A | ST #T | #A | ST #T | #A | ST #T | #A | ST #T | #A | ST
CDI1 || 11 27 | 295 | 5 11 | 26 | 293 3 19 | 261 11 | 26 | 293 4 18| 6 4 18 | 227
CD2 3 27 | 229 1 3 9 | 33 3 1 8 3 9 | 33 3 9 1 3 9 46
CD3 || 12 45 1330 | 4 12 | 2 17 5 2 34 12 | 2 17 5 0 1 5 0 82
CD4 || 19 45 | 319 | 3 19 | 2 14 5 3 15 19 | 2 14 5 0 1 5 0 74
CD5 || 11 36 | 306 | 3 11 1 11 4 1 8 11 1 11 4 0 1 4 0 54
CD6 9 36 1297 | 4 9 2 16 9 10 | 36 9 2 16 8 0 3 8 0 35
CD7 || 13 36 1280 5 13 | 2 19 6 5 67 13 | 2 19 6 0 1 6 0 32
LS1 1 18 149 1 1 0 2 1 0 5 1 0 2 1 0 1 1 0 55
LS2 11 27 | 241 | 4 11 | 26 | 200 15 | 19 | 69 11 | 26 | 200 4 18| 5 7 18 | 356
LS3 12 45 | 326 | 3 12 1 11 5 11 46 12 1 11 5 0 1 5 0 262
LS4 7 63 | 419 | 4 7 2 19 7 0 12 7 2 19 7 0 1 7 0 333
LS5 10 54 | 377 | 3 10 1 7 7 4 20 10 1 7 7 0 1 8 0 105
LS6 9 45 | 330 | 3 9 2 8 5 12 | 58 9 2 8 5 0 1 7 0 180
LS7 6 45 | 317 | 3 6 1 6 5 2 18 6 1 6 6 0 1 6 0 81
T/A || 134 549 | 302 | 3 134 | 77 | 46 80 89 | 463 134 | 77 46 70 45 | 1.7 76 | 45 137
Cl 11 104 | 455 | 4 11 1 11 8 1 11 11 1 11 8 0 1 9 0 114
C2 11 | 104 | 461 | 3 11 1 7 8 2 30 11 1 7 8 0 1 9 0 16
C3 21 | 104 | 458 | 4 21 3 12 10 | 33 | 79 21 3 12 11 |0 1 1] 0 200
C4 28 | 156 | 580 | 5 28 | 0 3 28 | 32 | 60 28 | 0 3 18 | 0 1 18 | 0 45
(6] 33 | 104 | 451 4 3310 3 8 3 17 33 10 3 10 | O 1 10 | O 55
Co6 24 | 117 | 499 | 4 24 1 0 2 9 3 14 2410 2 9 0 1 9 0 445
Cc7 17 | 117 | 502 | 3 17 | 2 9 9 5 20 17 | 2 9 9 0 1 9 0 175
C8 25 | 143 | 540 | 2 25 | 2 11 11 2 19 25 | 2 11 11 ] 0 1 11 {0 187
c9 16 | 117 | 515 | 317 16 | 2 17 9 16 | 52 16 | 2 17 9 0 1 9 0 170
C10 13 | 130 | 535 | 4 1310 3 11 6 31 13|10 3 11| 0 1 11| 0 140
T/A || 199 1196 | 500 | 4 199 | 11 | 7.8 111 103 | 333 199 | 11 7.8 104 0 1 106 | 0 154.7

large data queries.

Overall, our results show clearly that our approach outperforms the state of the art on both benchmark
datasets.

7 Conclusion and Future Work

We implements innovative solutions for the selection of sources. We showed a join-aware source selection can
lead to significant relevant sources reduction without loosing the recall. The complete evaluation result of the
query runtimes will be presented in the final report of the 3DFed federation engine.
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