Eurostars Project

3DFed — Dynamic Data Distribution and Query Fed-
eration

Project Number: E!114681 Start Date of Project: 2021/04/01 Duration: 36 months

Deliverable 5.1

A Report on 3DFed Evaluation Based on
Linked TCGA Use Case

Dissemination Level Public

Due Date of Deliverable March 31, 2024
Actual Submission Date April 1, 2024
Work Package WP5, Use Cases
Deliverable D5.1

Type Report
Approval Status Final

Version 1.0

Number of Pages 10

Abstract: In this report, we present the evaluation results based on Linked TCGA dta as well as a
fine-grained evaluation of the CostFed engine with state of the art.

The information in this document reflects only the author’s views and Eurostars is not liable for any use that may be made of the information
contained therein. The information in this document is provided "as is" without guarantee or warranty of any kind, express or implied, including

but not limited to the fitness of the information for a particular purpose. The user thereof uses the information at his/ her sole risk and liability.

4

eurostars™

3DFed Project by Eurostars.

D5.1-v. 1.0

History
Version | Date Reason Revised by
0.1 15/03/2024 Initial Template & Deliverable | Muhammad Saleem
Structure
0.2 25/03/2024 Initial draft completed Muhammad Saleem
1.0 01/04/2024 Finalizing Muhammad Saleem
Author List
Organization Name Contact Information

University of Paderborn

Muhammad Saleem

saleem @informatik.uni-leipzig.de

OpenLink Software

Milos Jovanovik

mjovanovik @openlinksw.com

D5.1-v. 1.0

Contents

1 Introduction 3

2 Linked TCGA Benchmark 3
2.1 Large Data: Linked TCGA e e 3
2.2 LargeData Queries i i i e e e e e e e e e 3
2.3 Performance Metrics e e e e e e e 4

3 Evaluation 4
3.1 Experimental Setup e 4
3.2 Experimental Results 6

4 Conclusion 9

References 9

D5.1-v. 1.0

1 Introduction

We first briefly describe the benchmark we used in this evaluation. In particular, we focus on the Linked TCGA
data and the queries used. It is followed by the performance metrics. The evaluation results and the detailed
investigation of the query plans comes in the end.

2 Linked TCGA Benchmark

2.1 Large Data: Linked TCGA

Linked TCGA is the RDF version of Cancer Genome Atlas' (TCGA) presented in [6]. This knowledge base
contains cancer patient data generated by the TCGA pilot project, started in 2005 by the National Cancer Institute
(NCI) and the National Human Genome Research Institute (NHGRI). Currently, Linked TCGA comprises a total
of 20.4 billion triples® from 9000 cancer patients and 27 different tumour types. For each cancer patient, Linked
TCGA contains expression results for the DNA methylation, Expression Exon, Expression Gene, miRNA, Copy
Number Variance, Expression Protein, SNP, and the corresponding clinical data.

Given that we aimed to build a 1-billion-triple dataset, we selected 306 patient data randomly to reach the
targeted 1 billion triples. The patients distributed evenly across 3 different cancer types, i.e. Cervical (CESC),
Lung squamous carcinoma (LUSC) and Cutaneous melanoma (SKCM). The selection of the patients was
carried out by consulting domain experts. This data is hosted in three TCGA SPARQL endpoints with all DNA
methylation data in the first endpoint, all Expression Exon data in the second endpoint, and the remaining data
in the third endpoint. Consequently, we created three different datasets, namely the Linked TCGA-M, Linked
TCGA-E, and Linked TCGA-A containing methylation, exon, and all remaining data, respectively. Further
statistics about these three datasets can be found in Table .

Table 1: Linked TCGA datasets statistics.

Dataset #Triples | #Subjects | #Predicates #Objects | #Classes | #Links | Structuredness
Linked TCGA-M | 415,030,327 | 83,006,609 6 | 166,106,744 1 - 1
Linked TCGA-E | 344,576,146 | 57,429,904 7| 84,403,422 1 - 1
Linked TCGA-A | 35,329,868 | 5,782,962 383 8,329,393 23 | 251.3k 0.99

2.2 Large Data Queries

The large data queries were designed to test the federation engines for real large data use cases, particularly
in life sciences domain. These queries span over large datasets (such as Linked TCGA-E, Linked TCGA-M)
and involve processing large intermediate result sets (usually in hundreds of thousands) or lead to large result
sets (minimum 80459) and large number of endpoint requests. Consequently, we will see in the evaluation that
the query processing time for large data queries exceeds one hour. In order to collect real queries with these
characteristics, we contacted different domain experts and obtained a total of 8 large data queries to be included
in our benchmark. Further details given in table .

"http://cancergenome.nih.gov/
2http://'ccga.deri.ie/

http://cancergenome.nih.gov/
http://tcga.deri.ie/

D5.1-v. 1.0

Table 2: Linked TCGA query characteristics. (#TP = total number of triple patterns in a query, #RS = distinct
number of relevant source. The values inside brackets show the total number of distinct sources used in the
SPARQL 1.1 version (using SPARQL SERVICE clause) of each of the benchmark queries. the minimum number
of distinct sources required to get the complete result set, #Results = total number of results), #JV = total
number join vertices, MJVD = mean join vertices degree, MTPS = mean triple pattern selectivity, MBRTPS =
Mean BGP-restricted triple pattern selectivity, MJRTPS = mean join-restricted triple pattern selectivity, UN =
UNION, OP = OPTIONAL, DI = DISTINCT, FI = FILTER, LI = LIMIT, OB = ORDER BY, RE = Regex, NA
= not applicable since there is no join node in the query, - = no SPARQL clause used. Avg. = the average values
across the individual queries categories, i.e., simple, complex, and large data.

‘ Query ‘ Join Vertices ‘ #TP ‘ #RS ‘ #Results ‘ #JV ‘ MIVD ‘ MTPS ‘ MBRTPS ‘ MIJRTPS ‘ Clauses ‘

L1 4 Path 6 3(2) | 227192 4 2 0.192 | 0.48437 | 0.00001 UN

L2 1 Path,1 Hybrid 6 3(2) | 152899 2 3.5 0.286 | 0.15652 | 0.00098 DI, FI

L3 2 Path,1 Hybrid 7 3(2) | 257158 3 3 0.245 | 0.07255 | 0.07205 FI, OB

L4 2 Path,2 Hybrid 8 4(2) | 397204 4 25 0.305 | 0.38605 | 0.00008 | UN, FI, RE
L5 1 Star,1 Path,1 Sink,2 Hybrid | 11 | 4(3) | 190575 5 3 0.485 | 0.39364 | 0.00367 FI

L6 1 Star,1 Path,1 Sink,2 Hybrid | 10 | 4(2) | 282154 5 2.8 0.349 | 0.23553 | 0.00298 FI, DI

L7 2 Path,1 Hybrid 5 13(2) | 80460 3 2.33 0.200 | 0.26498 | 0.00007 DI FI

L8 2 Path,2 Hybrid 8 3(2) | 306705 4 2.5 0.278 | 0.33376 | 0.00001 UN, FI

2.3 Performance Metrics

Previous works [4, 5, 7] suggest that the following six metrics are important to evaluate the performance of
federation engines: (1) the total number of triple pattern-wise (TPW) sources selected during the source selection,
(2) the total number of SPARQL ASK requests submitted to perform (1), (3) the completeness (recall) and
correctness (precision) of the query result set retrieved, (4) the average source selection time, (5) the average
query execution time, In addition, we also show the results of the data sources index/data summaries generation
time and index compression ratio (i.e., index to dataset ratio). However, they are not applicable to index-free
approaches such as FedX [7]. Previous work [5] show that an overestimation of triple pattern-wise sources
selected can greatly increase the overall query execution time. This is because extra network traffic is generated
and unnecessary intermediate results are retrieved, which are excluded after performing all the joins between
query triple patterns. The time consumed by the SPARQL ASK queries during the source selection is directly
added into the source selection time, which in turn is added into the overall query execution time.

3 Evaluation

In this section, we evaluate state-of-the-art SPARQL query federation systems by using both SPARQL 1.0 and
SPARQL 1.1 versions of LargeRDFBench queries. We first describe our experimental setup in detail. Then, we
present our evaluation results. All data used in this evaluation can be found on the benchmark homepage.

3.1 Experimental Setup

We used Virtuso triplestore for loading the benchmark datasets. To avoid server bottlenecks, we started the two
largest endpoints (i.e., Linked TCGA-E and Linked TCGA-M) in machines with high processing capabilities. To

D5.1-v. 1.0

minimise the network latency we used a dedicated local network. We conducted our experiments on local copies
of Virtuoso (version 7.1) SPARQL endpoints with number of buffers 1360000, maximum dirty buffers 1000000,
number of server threads 20, result set maximum rows 100,000,000,000 and maximum SPARQL endpoint query
execution time of 6000,000,000 seconds.

All experiments (i.e., the federation engines themselves) were run on a separate Linux machine with a
2.70GHz i7 processor, 8 GB RAM and 500 GB hard disk. We used the default Java Virtual Machine (JVM)
initial memory allocation pool (Xms) size of 1024MB and the maximum memory allocation pool (Xmx) size of
4096MB. Each query was executed 10 times and results were averaged. The query timeout was set to 2.5 hours
(9 x 10% ms). Furthermore, the query runtime results were statistically analyzed using Wilcoxon Signed Rank
Test (WSRT), a non-parametric statistical hypothesis test used when comparing two related samples. We chose
this test because it is parameter-free and, unlike a t-test, it does not assume a particular error distribution in the
data. For all the significance tests, we set the p-value to 0.05.

Federated Query Engines

We compared five SPARQL endpoint federation engines (versions available as of October 2015) — FedX [7],
SPLENDID [2], ANAPSID [2], FedX+HiBISCusS [5], CostFed — on all of the 8 benchmark queries. Note that
HiBISCuS [5] is only a source selection approach and FedX+HiBISCusS is the HiBISCuS extensions of the
FedX federation engines. To the best of our knowledge, the five systems we chose are the most state-of-the-art
SPARQL endpoint federation engines [5]. Of all the systems, only ANAPSID and CostFed perform join-aware
Triple Pattern-Wise Source Selection (TPWSS). The goal of the join-aware TPWSS is to select those data
sources that actually contribute to the final result set of the query. This is because it is possible that a source
contributes to the triple pattern but its results may be excluded after performing a join with the results of another
triple pattern.

FedX [7] is an index-free SPARQL query federation system which completely relies on SPARQL ASK
queries and a cache (which store the most recent ASK request) to perform TPWSS. This query is forwarded
to all of the data sources and those sources which pass the SPARQL ASK test are selected. The result of each
SPARQL ASK test is then stored in cache to be used in future. Thus before sending a SPARQL ASK request to
a particular data source, a cache lookup is performed. A bind (vectored evaluation in nested loop) join is used
for the integration of sub-queries results. We consider two setups for FedX. We evaluated both FedX(cold) and
FedX(100%) setups of FedX. The former setup displays the characteristics of FedX with its cache empty and
the latter means that cache contains all the information necessary for TPWSS. Thus in later setup, no SPARQL
ASK request is used for TPWSS. Consequently, the former setup represents the worst case and the later setup
represents the best case scenario.

SPLENDID [2] is an index-assisted approach which makes use of VoiD descriptions as index along with
SPARQL ASK queries to perform the TPWSS. A SPARQL ASK query is used when either predicate is unbound
(e.g., < s > ?p < o >) or any of the subject (e.g., < s > < p > 70) or object (e.g., 7s < p > < 0 >) of the
triple pattern is bound. Both bind and hash joins are used for integrating the sub-queries result and a dynamic
programming strategy [8] is used to optimize the join order of SPARQL basic graph patterns.

ANAPSID [1] is an index-assisted adaptive query engine that adapts its query execution schedulers to
the data availability and runtime status of SPARQL endpoints. ANAPSID performs a heuristic-based source
selection presented in its extension [3]. The Adaptive Group Join (based on the Symmetric Hash Join and
Xjoin operators) and Adaptive Dependent Join (adjoin) which extends the dependent join operator are used for
integrating the sub-queries result.

CostFed source selection (based on HibIScUS[5]) is the index-assisted hyper graph based triple pattern-wise
source selection approach for SPARQL endpoint federation systems. It intelligently makes use of the hypergraph

D5.1-v. 1.0

representation of SPARQL queries and URI’s authorities® to perform TPWSS. The query planner is based on
cost estimation for different joins.

3.2 Experimental Results

Index Construction Time and Compression Ratio

Table 3 shows a comparison of the index/data summaries construction time and the compression ratio* of the
selected approaches. A high compression ratio is essential for fast index lookups during source selection and
query planning. FedX does not rely on an index and makes use of a combination of SPARQL ASK queries and
caching to perform the whole of the source selection steps it requires to answer a query. Therefore, these two
metrics are not applicable for FedX. As pointed out in [S5], ANAPSID only stores the set of distinct predicates
corresponding to each data source. Therefore, its index generation time and compression ratio are better than
that of CostFed and SPLENDID on our benchmark.

Table 3: Comparison of index construction time, compression ratio, and support for index update. (NA = Not
Applicable).

FedX | SPLENDID | ANAPSID | CostFed
Index Gen. Time(min) NA 190 6 92
Compression Ratio(%) | NA 99.998 99.999 99.998
Index update? NA X X v

Efficiency of Source Selection

We define efficient source selection in terms of: (1) the total number of triple pattern-wise sources selected (#T),
(2) the total number of SPARQL ASK requests (#AR) used to obtain (1), and (3) the source selection time (SST).
Table 4 shows the results of these three metrics for the selected approaches. The optimal number of sources were
calculated by looking manually into the intermediate results for relevant sources and selecting those sources
which contribute to the final result set.

Overall, ANAPSID is the most efficient approach in terms of total TPW sources selected, CostFed is the
most efficient in terms of total number of SPARQL ASK requests used, and FedX (100% cached) is the fastest
in terms of source selection time (see Table 4). It is important to note that FedX(100% cached) means that the
complete source selection is performed by using only cache, i.e., no SPARQL ASK request is used. This the
best-case scenario for FedX and very rare in practical cases. Still, FedX (100% cached) clearly overestimates the
set of capable sources by more than half to the optimal (474 in FedX vs. 229 optimal). FedX (100% cached) is
clearly outperformed by ANAPSID and CostFed. FedX (100% cached)’s poorer performance is due to FedX
only performing TPWSS while both CostFed and ANAPSID perform join-aware TPWSS. As mentioned before,
such overestimation of sources can be very costly because of the extra network traffic and irrelevant intermediate
results retrieval. The effect of such overestimation is consequently even more critical while dealing with large
data queries. For large data queries CostFed is not able to skip many sources. This is because the approach
makes use of the different URI authorities to perform source pruning [5]. However, most of the large data
queries come from Linked TCGA with single URI authority (i.e., tcga.deri.ie). Hence, HiBISCuS tends to

SURI syntax: http://tools.ietf.org/html/rfc3986
*Compression ratio = 100%(1 - index size/total data dump size)

tcga.deri.ie
http://tools.ietf.org/html/rfc3986

D5.1-v. 1.0

Table 4: Comparison of the source selection in terms of total triple pattern-wise sources selected #7T, total number
of SPARQL ASK requests #AR, and source selection time SST in msec. SST* represents the source selection
time for FedX(100% cached i.e. #A =0 for all queries). For ANAPSID, SST represents the query decomposition
time.

FedX SPLENDID ANAPSID CostFed Optimal
Query | #T | #AR | SST | SST* | #T | #AR | SST | #T | #AR | SST | #T | #AR | SST #T
L1 14 | 78 | 282 5 14| 52 | 720 | 6 10 260 14 0 124 6
L2 10 | 78 | 279 7 10| 13 | 230 | 6 5 142 10 0 94 6
L3 10 | 91 314 9 10 | 26 | 314 | 7 5 146 11 0 99 7
L4 18 | 104 | 321 7 18 0 198 | 8 8 338 16 0 80 8
L5 21 | 143 | 400 5 21| 26 | 277 | 12| 31 | 10255 | 20 0 130 11
L6 20 | 130 | 419 4 20| 26 | 298 | 10 | 52 | 13173 | 18 0 160 10
L7 20 | 65 | 320 6 20| 13 | 240 | 6 7 1822 | 9 0 270 5
L8 20 | 104 | 366 7 20| 52 | 700 | 9 17 404 | 20 0 170 8

overestimate the number of sources in this case. On the other hand, ANAPSID makes use of SPARQL ASK
requests combined with SSGM (Star Shaped Group Multiple Endpoints) [3] to skip a large number of sources.
However, SPARQL ASK queries are expensive compared to local index lookups, as performed in HiBISCusS.

Completeness and Correctness of Result Sets

Two systems can only be compared to each other if they provide the same results for a given query execution.
Table 5 shows the federation engines and the corresponding Linked TCGA queries for which complete and
correct results were not retrieved by at least one of the systems. It is important to note that the correct results
for all benchmark queries were obtained by loading all the data sources into a single virtuoso triple store and
executing the query (a no more federated query) over it. We have not included L8 since every system either
timed out or resulted in runtime error, hence the results completeness and correctness cannot be determined in
this case. CostFed clearly outperforms other systems in this evaluation. Interestingly, none of the systems is
able to provide complete and correct results. The incomplete results generated by federation systems can be due
to a number of reasons, e.g., their join implementation, the type of network [4], the use of an outdated index
or cache or even endpoint restrictions on the maximum result set sizes. However, in our evaluation we always
used an up-to-date index and cache, there was no restriction on SPARQL endpoints maximum result set sizes,
and a dedicated local network. Thus, the sole reason (to the best of our knowledge) for the systems at hand not
providing complete/correct result is the existence of flaws in the implementation of joins or various SPARQL
constructs such as FILTER, REGEX, etc. For example (as discussed further in the next section), FedX possibly
give zero results for L2, L3, and L5 due to a flaw in the FILTER implementation.

Query Execution Time

The query execution time has often been used as the key metric to compare federation engines. Table 6 show
the query execution time of the selected approaches for Linked TCGA queries. The query execution time was

D5.1-v. 1.0

Table 5: Result set completeness and correctness

error, TO = Time out)

: Systems with incomplete precision and recall. (RE = Runtime

System FedX SPLENDID ANAPSID FedX+HiBISCuS CostFed
Precision Recall F1 | Precision Recall F1 | Precision Recall F1 | Precision Recall F1 | Precision Recall Fl
L1 TO TO TO 1 0.03 0.06 1 0.16 0.28 TO TO TO 1 1 1
L2 0 0 0 TO TO TO TO TO TO 0 0 0 1 1 1
L3 0 0 0 TO TO TO TO TO TO 0 0 0 1 1 1
L4 TO TO TO 0 0 0 0 0 0 1 0.48 0.65 1 1 1
L5 TO TO TO RE RE RE TO TO TO 0 0 0 RE RE RE
L6 TO TO TO RE RE RE TO TO TO 0 0 0 RE RE RE
L7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 6: Runtimes (in ms) on Linked TCGA queries with all Virtuoso endpoints. The values inside the brackets
show the percentage of the actual query results obtained.(TO = Time out after 2.5 hour, RE = runtime error).

Qr. | FedX (cold) FedX (warm) SPLENDID ANAPSID | FedX+HiBISCuS CostFed

Ll | TO (72 %) TO (72 %) | 123735(2.73 %) | 19672 (15.76 %) | TO (1.2 %) 1237000 (100 %)
L2 35 (0 %) 35 (0 %) 45473 (1.8 %) TO (0 %) 76 (0 %) 454709 (100 %)
L3 27 (0 %) 27 (0 %) 4877696 (100 %) TO (0 %) 47 (0 %) 4877991 (100 %)
L4 | TO (0.08 %) TO (0.08 %) | 7535531 (0%) | 8775598 (0 %) | 62595 (48.34 %) | 7535200 (100 %)
L5 TO (0 %) TO (0 %) RE (0 %) TO (0 %) TO (0 %) RE (0 %)

L6 TO (0 %) TO (0 %) RE (0 %) TO (0 %) 6127090 (0 %) RE (0 %)

L7 | 122633 (100 %) | 122500 (100 %) | 114456 (100 %) | 105447 (100 %) | 119449 (100 %) | 114400 (100 %)
L8 | TO (0.01 %) TO (0.01 %) TO (0.05 %) TO (0.05 %) TO (0.01 %) TO (0.05 %)

D5.1-v. 1.0

calculated once all the results were retrieved from the result set iterator. Overall, our engine is able to retrieve
complete results for 5 out of 8 queries within the timeout limit. Other systems are only able to retreive complete
results for 1 or maximum 2 queries.

The most important finding for large data queries is that no system can produce complete results for all
of the 8 queries. This shows that the current implementation of query planning strategies (i.e., bushy trees in
ANAPSID, left-deep trees in FedX, and dynamic programming [8] in SPLENDID) and join techniques (i.e.,
adaptive group and dependent join in ANAPSID, bind and nested loop in FedX, and bind, hash in SPLENDID)
in the selected systems is still not mature enough to deal with large data. In addition, we have found that queries
terminating within the timeout limit and returning zero results might possibly be caused by a flaw in the FILTER
implementation. For example, FedX and its HIBISCuS extension give zero results for queries L2, L3, and L5
and send a single endpoint request (ref., ??) for each of these queries. All of these queries contain a FILTER
clause. However, we found that FedX and its HiBISCuS extension are able to retrieve results by removing the
FILTER clause and setting the LIMIT=1 in these queries. We also noticed that for queries with incomplete results
(e.g, L1, L4, L8 etc.), FedX and its HiBISCuS extension send a large number of endpoint requests and quickly
get some initial results. After that the engines stop sending endpoint requests until the timeout limit is reached.
This may be due to some memory leak or possible deadlock in the query execution portion of FedX. CostFed
able to give complete results for 5/8 large data queries, the highest in comparison to other systems. The query
L4 is executed by ANAPSID, SPLENDID, SPLENDID+HiBISCuS within the timeout limit with zero results.

While running large data queries, we found that Virtuoso imposes a limit> of maximally 22° = 1,048,576
on the maximum number of rows returned as HTTP response. This means that a federation engine based on
Virtuoso may end up returning incomplete results if it results for a sub-query with a result set size larger than
1,048,576 rows. To ensure that our results were not tainted by this technical limitation of Virtuoso, we have
analyzed all the endpoint requests (given in Table ??) sent by each of the federation engines for each of the
LargeRDFBench queries. Our study showed that SPLENDID sends at least one endpoint request with result
size greater than 1,048,576 rows. The rest of the federation engines do not send endpoint requests with result
size greater than this limit. Given that the endpoints requests with answer set sizes beyond 22" rows were sent
exclusively to the 3 Linked TCGA (i.e. Linked TCGA-A, Linked TCGA-E, Linked TCGA-E) datasets, we reran
our benchmarking experiments with all federation engines on large data queries (i.e., L.1-L8) after replacing the
Virtuoso servers for these 3 datasets with FUSEKI® servers. Note that the FUSEKI triple store does not have
such limit on the maximum number of results returned in response to a query. In this series of experiments,
SPLENDID times out with a recall of O (i.e., no results generated) for the queries L1, L2 and L4. The other
federation engines return results comparable to those presented in Table 6.

4 Conclusion

We presented an evaluation of the state-of-the-art federation engines with CostFed based on Linked TCGA
use-case data and queries. The evaluation shows the superiority of the proposed engine. However, there is still
further improvements possible, since our engine was able to retrieve complete results for 5 out of 8 selected
queries.

In the future, we want to devise a query planner based on Deep Reinforcement Learning (DRL) with
feedback system.

3This Virtuoso problem is now solved. See https://github.com/openlink/virtuoso-opensource/issues/700
SFUSEKTI: https://jena.apache.org/documentation/serving_data/

https://github.com/openlink/virtuoso-opensource/issues/700
https://jena.apache.org/documentation/serving_data/

D5.1-v. 1.0

References

(1]

(2]

(3]

(4]

(5]

[6]

[7]

[8]

Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and Edna Ruckhaus. ANAPSID: an
adaptive query processing engine for SPARQL endpoints. In ISWC, 2011.

Olaf Gorlitz and Steffen Staab. Splendid: Sparql endpoint federation exploiting void descriptions. In COLD
at ISWC, 2011.

Gabriela Montoya, Maria-Esther Vidal, and Maribel Acosta. A heuristic-based approach for planning
federated sparql queries. In COLD, 2012.

Gabriela Montoya, Maria-Esther Vidal, Oscar Corcho, Edna Ruckhaus, and Carlos Buil-Aranda. Bench-
marking federated sparql query engines: are existing testbeds enough? In ISWC, pages 313-324. 2012.

Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. HiBISCuS: Hypergraph-based source selection for
sparql endpoint federation. In ESWC, 2014.

Muhammad Saleem, Shanmukha S Padmanabhuni, Axel-Cyrille Ngonga Ngomo, Aftab Igbal, Jonas S
Almeida, Stefan Decker, and Helena F Deus. TopFed: TCGA tailored federated query processing and
linking to LOD. JBMS, 2014.

Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt. Fedx: Optimization
techniques for federated query processing on linked data. In ISWC, 2011.

P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path selection
in a relational database management system. In SIGMOD, pages 23-34, 1979.

Page 10

	Introduction
	Linked TCGA Benchmark
	Large Data: Linked TCGA
	Large Data Queries
	Performance Metrics

	Evaluation
	Experimental Setup
	Experimental Results

	Conclusion
	References

