Eurostars Project

3DFed — Dynamic Data Distribution and Query Fed-
eration

Project Number: E!114681 Start Date of Project: 2021/04/01 Duration: 36 months

Deliverable 3.4

Final Report on the Dynamic Data Ex-
change

Dissemination Level Public

Due Date of Deliverable September 30, 2023

Actual Submission Date September 30, 2023

Work Package WP3, Automatic Data Distribution & Dynamic Exchange
Deliverable D34

Type Report

Approval Status Final

Version 1.0

Number of Pages 8

Abstract: In deliverable D3.3, we propose a method to do the dynamic data exchange between nodes
and did initial evaluation based on the Semantic Web Dog Food dataset. The evaluation results certainly
hinted at the usefulness of the proposed method. In this deliverable, we present more detailed results
about the proposed dynamic data exchange solution.

The information in this document reflects only the author’s views and Eurostars is not liable for any use that may be made of the information
contained therein. The information in this document is provided "as is" without guarantee or warranty of any kind, express or implied, including

but not limited to the fitness of the information for a particular purpose. The user thereof uses the information at his/ her sole risk and liability.

2

eurostars™

3DFed Project by Eurostars.

D3.4-v. 1.0

History
Version | Date Reason Revised by
0.1 01/09/2023 Initial Template & Deliverable Structure Mohammad Sajjadi
0.2 10/09/2023 Initial Draft Asal Alikhani
0.3 23/09/2023 Issued for review Muhammad Saleem
0.4 28/09/2023 Review Milos Jovanovik
1.0 30/09/2023 Final Submission Mohammad Sajjadi
Author List
Organization Name Contact Information
elevait GmbH & Co. KG | Asal Alikhani asal.alikhani @elevait.de
University of Paderborn Muhammad Saleem saleem @informatik.uni-leipzig.de
elevait GmbH & Co. KG | Mohammad Sajjadi mohammad.sajjadi @elevait.de
OpenLink Software Milos Jovanovik mjovanovik @openlinksw.com

D3.4-v. 1.0

Contents
1 Introduction 3
2 Summarized Approach 3
3 Evaluation Setup 3
3.1 Dataset e e e 4
3.2 Workloads (train) and Benchmark (test) Queries 4
3.3 Partitioning Environment oL L e e e 4
4 Results 5
5 Conclusion and Future Work 6
References 7

D3.4-v. 1.0

1 Introduction

In previous deliverables D3.1 and D3.2 it was shown that partitioning techniques that take data locality into
account, greatly minimize the inter-communication between partitions, thus potentially leading to better query
runtimes. In T3.1, two novel workload-based RDF graph partitioning techniques — namely PCM and PCG —
were developed by using different clustering techniques. The proposed approach makes use of the predicates’
co-occurrences in the querying workload. The evaluation results show that the proposed techniques have better
query runtime performances in comparison to other partitioning techniques.

The proposed algorithms are based on querying history, which changes with time. As such, we need to
adapt the proposed distribution according to the change in querying history with time. To this end, we need a
means for a dynamic data exchange between data nodes, according to the new querying workload. In deliverable
D3.3, we proposed a method to do the dynamic data exchange between nodes and did initial evaluation based on
the Semantic Web Dog Food dataset. The evaluation results certainly hinted at the usefulness of the proposed
method.

In this deliverable, we present more detailed results about the proposed dynamic data exchange mechanism.
While the previous evaluation results were based on the Koral engine and the Semantic Web Dog Food dataset,
in this deliverable, we chose the DBpedia dataset due to it being more diverse in terms of the information it
contains, as well as the opportunity if provides for a more diverse set of querying. The previous evaluation was
based on the distributed triplestore Koral, but this evaluation is based on CostFed [6], a pure federated SPARQL
query processing on top of multiple endpoints. The deliverable is generally shorter, as we mainly focus on the
evaluation results.

In the next section, we first present an extended summary of the proposed approach, followed by the
evaluation results and discussion.

2 Summarized Approach

We propose to collect a one week query log and make a new data distribution, which better reflects the workload
from the logs. To perform this task, we follow the steps below.

* We get a querying workload W1 and perform predicate-clustering, using PCM or PCG. The corresponding
cluster of predicates Cl1 is then assigned to physical partitions as discussed before.

* The triplestore is then used in practice for one week, and the new workload W2 is collected. We then
perform the predicate-clustering C2 again, using PCM or PCG, using the new workload.

* We compare C1 and C2 for any changes, i.e., we check if the predicate clusters have changed in C2 with
regards to C1. If there are no changes, we do not make any dynamic data distribution among the physical
partitions. If there are changes, we carry on the required changes (insertion or deletion of triples) in the
current physical partitions, to exactly reflect C2.

* We repeat these steps every week (or every two weeks), depending on the workload querying frequency.

3 Evaluation Setup

Here, we reused the exact evaluation setup discussed in D3.2, in D3.3, and in [1]. The reasons for choosing this
evaluation setup are two-fold: (1) since our proposed techniques require query workloads, we wanted to use

D3.4-v. 1.0

real-world query workloads (i.e., collected from public SPARQL endpoints of real-world RDF datasets), and
real-world RDF benchmarks, (2) we wanted our results to be comparable with the results presented in [1], in
D3.2, and in D3.3.

3.1 Dataset

We use the DBpedia 3.5.1 dataset for evaluation. We chose this dataset because it was previously used in
evaluating different partitioning techniques [1]. Furthermore, it is also used in many evaluations [4, 5, 7, 2]
pertaining to SPARQL query processing. The dataset contains 42,849,609 RDF triples, 9,495,865 distinct
subjects, 1,063 distinct predicates, 13,620,028 distinct objects, and a structuredness [4] value of 0.196. The
real-world query logs for the DBpedia 3.5.1 dataset are freely available from LSQ dataset [8].

3.2 Workloads (train) and Benchmark (test) Queries

Our proposed approach needs a sample set of SPARQL queries to be used for training. We make use of the real-
world queries from DBpedia 3.5.1 public SPARQL endpoints. The queries are available from LSQ v2.0 [8]. The
required DBpedia 3.5.1 queries were fetched from the public LSQ endpoints http://1sq.aksw.org/sparql
using the SPARQL query given in Listing 1.

p—

Count all SELECT queries from dbpedia divided weekly by execution
timestamp in 2010.

PREFIX 1lsqv: <http://lsq.aksw.org/vocab#>
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX sd: <http://www.w3.org/ns/sparql-service-description#>

SELECT Distinct ?text #?timeStamp
From <http://1sq.aksw.org/dbpedia>
WHERE

10 |{
11 ?7query lsqv:text ?text

12 ?query lsqv:hasRemoteExec ?re

13 ?re prov:atTime ?timeStamp

14 ?query lsqv:hasSpin ?spin

15 ?spin a <http://spinrdf.org/sp#Select>

16 FILTER(

17 (YEAR(?timeStamp)= 2010 && MONTH(?timeStamp)= 5 && DAY (?
timeStamp)>= 1 && DAY (?timeStamp)<(1+7))

Nellc N Ro) RV, [FE ISR 8]

18)

}
20 |ORDER BY ?timeStamp

Listing 1: SPARQL query

Once we retrieved all queries from the LSQ endpoint, we divided them into a time slot of one week. Then
we used the first week queries for training and the next week queries for testing, and so on. This is exactly the
same process adopted in deliverable D3.3.

3.3 Partitioning Environment

In D3.3, we only used a clustered or distributed RDF storage environment, where the given dataset is distributed
among n data nodes of a clustered triplestore. In this deliverable, we used the second partitioning environment,
i.e., a purely federated environment, in which the dataset is distributed among multiple SPARQL endpoints

http://lsq.aksw.org/sparql

D3.4-v. 1.0

that are physically separated from each other and a federation engine is used to perform the query processing
task. We used CostFed [6], a federated SPARQL query processing engine for federation over multiple SPARQL
endpoints. We chose CostFed because it is developed in the context of the 3DFed project.

Number of Partitions. Inspired by D3.2, D3.3, [1] and [3], we generated 10 partitions of the selected datasets.
Each partition was loaded into a separate Virtuoso triplestore and has a unique public SPARQL endpoint URL.

Selected RDF Graph Partitioning Technique. We used the PCM clustering algorithm because it has proven to
be performing better than PCG in terms of clustering generation. In addition, it was also used in D3.3.

Performance Measures. We used Queries per Second (QpS), and the average query execution time to compare
the performance of the proposed dynamic data exchange. We used a six minutes timeout for query execution
of each query. We also measured the amount of dynamic data exchange between partitions using the Gini
coefficient, defined as follows.

Definition 1 (Partitioning Shuffling) Let n be the total number of partitions generated by a partitioning
technique and Py, Ps, . . . P, be the set of these partitions, ordered according to the increasing size of the number
of triples. The shuffling in partitions is defined as a Gini coefficient:

n

25 (i x|Pl))
[— —"+1,0§b§1
o
(n—1) x Zl\Pj!
‘7:

Hardware and Software Specifications. The hardware and software configuration for our techniques is the
same as in [1], i.e., all of our experiments are executed on a Ubuntu-based machine with Intel i7-11370H 3.30
GHz, 4 cores and 32GB of RAM. We conducted our experiments on local copies of Tenforce / Virtuoso (version
7.2.5) SPARQL endpoints. We used the default configurations of the CostFed engine.

4 Results

The goal of our evaluation is to show how the query runtime performance is improved with dynamic data
partitioning. We also measured by what extent the data shuffling was performed by the proposed approach.

Train Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition

query 0 1 2 3 4 5 6 7 8 9
W1 1452687 69699 840721 232624 41958 264940 0 10925705 0 29721158
w3 106 7899267 6766022 0 0 0 0 0 0 28884097
W5 27997 2107781 1724004 10925811 8173242 6998646 1629215 264940 1115104 10582752
W7 0 0 0 0 0 0 0 0 0 43549492

W9 8554361 840721 934182 10959549 218811 61578 738786 126458 9337706 11777340
WI11 6766022 882679 11818035 252655 748228 1452687 8052658 570859 2024314 10981355

Table 1: Distributed triples in 10 partitions by PCM based on train queries.

Data Shuffling. Table 1 shows the number of triples assigned to each of the selected 10 partitions by the
proposed algorithms after every two weeks. We can clearly see a high variations in the number of triples. This

D3.4-v. 1.0

0.90

0.80

0.70
0.
0.
0.4
0.
0.
0.
0.00
PL P2 P3 P4 P5 P6 P7 P8 P9 P10

Figure 1: Partitioning shuffling within each partition.

a @
o o

o

sizes
(log scale)

w
o

Imbalance in Partition
N
o

[N
o

means that a high data shuffling was required to perform more optimized query execution. The amount of data
shuffling within each partition is given in Figure 1. A Gini coefficient value of O means highly balanced or
no variation, and 1 means highly unbalanced. We can clearly see the value is higher than 0.5 for the majority
of partitions, suggesting a high data shuffling (i.e., dynamic data exchange) was performed by the proposed
algorithm.

Average Query Runtime. Figure 2a shows a comparison of the average query runtime for 6 (W1 to W11)
different partitions, as a result from dynamic data shuffling after two-week querying workloads. The smaller
the runtime, the better the query execution performance. The decrease in the trend line suggests that query
runtime is decreased with dynamic data distribution, while going from week 2 to week 12. This shows the
effectiveness of the proposed dynamic data distribution. However, it can also be seen that the average runtime is
even increased from week 6 to week 8. This means it is also possible that the proposed shuffling results into
performance decrease. However, in majority of the cases, it is not the case.

Query per Second (QpS). Figure 2b shows a comparison of the QpS values for the 6 dynamic data shuffling and
final partitions based on biweekly querying loads. The higher the QpS, the better the query runtime performance.
Each query load is before its benchmark queries. Again, we can clearly see the QpS (in general) is improved with
dynamic data distribution while going from week 2 to week 12. This shows the effectiveness of the proposed
dynamic data distribution. However, we also see that the increase in QpS is not linear. For example the QpS of
week 6 is better than week 8. The possible reason is that the test queries selected for this experiments might
be more complex compared to the test queries in week 6. However, the increasing trend line suggests that the
proposed approach was able to improve the query per second execution after dynamic data shuffling.

The results are summarised in Table 2 as well. There were some queries with no result for each week but
the percentage is different and for week 10 none of the test queries had results. Sometimes this no-result error
happens when we run many queries in a row. Therefore we considered only those queries which had some
results.

5 Conclusion and Future Work

In this deliverable, we presented the final report on the dynamic data exchange. We made use of the six querying
workloads from DBpedia and did dynamic data shuffling according to the new workloads. We used QpS and the
average query runtime as two performance measures. The results clearly show the effectiveness of the proposed

D3.4-v. 1.0

100 1,000.00

== AV GRUmNtIME&s)
e Linesar (AVGRuntime(s))

Y —

10.00

[QPS)

0.00 ! 1.00
Week 2 Week 4 Week § Week B Week 12 Week 2 Week 4 Week § Week 8 Week 12

(a) Average runtime. (b) Queries per second.

Figure 2: Executing queries with Dynamic Data Exchange.

Train No Test queries Test query Total AVG QPS
queries of queries log size Runtime(s) Runtime(s)

Wil 63 w2 398 09.796 00.181 5.51
W3 11 W4 9999 00.053 00.027 37.74
W5 10000 W6 10000 00.010 00.002 600.00
W7 1661 W8 10000 00.098 00.025 40.82
W9 9995 W10 4494 00.000

W11 9999 WIi2 9999 00.437 00.012 84.67

Table 2: Average runtime and query per second of running test query logs.

dynamic data partitioning. However, further detailed experiments are needed to draw solid conclusions.

References

[1] Akhter et al. An Empirical valuation of RDF Graph Partitioning Techniques. In European Knowledge
Acquisition Workshop, 2018.

[2] Saleem et al. LSQ: The Linked SPARQL Queries Dataset. 2015.

[3] Saleem et al. A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems. 2016.

[4] Muhammad Saleem, Ali Hasnain, and Axel-Cyrille Ngonga Ngomo. LargeRDFBench: A Billion Triples
Benchmark for SPARQL Endpoint Federation. Journal of Web Semantics, 48:85-125, 2018.

[5] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. Feasible: A feature-based sparql
benchmark generation framework. In International Semantic Web Conference, pages 52—69. Springer, 2015.

D3.4-v. 1.0

[6] Muhammad Saleem, Alexander Potocki, Tommaso Soru, Olaf Hartig, and Axel-Cyrille Ngonga Ngomo.
CostFed: Cost-Based Query Optimization for SPARQL Endpoint Federation. Procedia Computer Science,
137:163-174, 2018.

[7] Schwarte et al. FedX: Optimization Techniques for Federated Query Processing on Linked Data. 2011.

[8] Claus Stadler, Muhammad Saleem, Qaiser Mehmood, Carlos Buil-Aranda, Michel Dumontier, Aidan Hogan,
and Axel-Cyrille Ngonga Ngomo. LSQ 2.0: A Linked Dataset of SPARQL Query Logs. Semantic Web,
(Preprint):1-23, 2022.

	Introduction
	Summarized Approach
	Evaluation Setup
	Dataset
	Workloads (train) and Benchmark (test) Queries
	Partitioning Environment

	Results
	Conclusion and Future Work
	References

