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1 Introduction

In the initial step of T3.1, two novel RDF graph partitioning techniques, PCM and PCG, were proposed by
using different clustering techniques that exploit the predicates co-occurrences in the querying workload and
were documented in the previous deliverable (D3.1: Initial Report on the Automatic Data Distribution). In
Task T3.2, the impact of the query workload on the accuracy of the data distribution with respect to various
measurements is evaluated and the final results are documented in this deliverable. PCM and PCG are evaluated
against state-of-the-art graph distribution techniques in terms of query runtime performance, number of timeout
queries, overall rank score, and number of distinct sources selected. We performed extensive experiments based
on various real-world datasets and query evaluation environments.

The evaluation results show the superiority of the proposed techniques (PCM and PCG) compared to other
partitioning techniques in terms of better query runtime performance. The source codes, datasets, and instructions
for reproducing the complete results are publicly available on GitHub!.

2 Evaluation

In this section we summarize the evaluation carried out. Section 2.1 describes the setup of the evaluation,
including the datasets used, benchmark queries, workloads, and partition details. Performance measures are
presented, and the hardware and software specifications of the machines on which the experiments are performed
are given. In Section 2.2 we examine the observed results of our experiments.

2.1 Evaluation Setup

We have exactly reused the evaluation setup discussed in [1]. The reasons for choosing this evaluation setup are
twofold:

* Since our proposed techniques require query workloads, we wanted to use real-world query workloads (i.e.,
collected from public SPARQL endpoints of real-world RDF datasets), and real-world RDF benchmarks.

* We wanted our results to be comparable to the results presented in [1].
Datasets. As in [1], for partitioning, we used two real-world datasets:

* DBpedia 3.5.1

* Semantic Web Dog Food (SWDF).

Some statistics of these datasets are shown in Table 1.
Benchmark Queries (test queries). As in [1], we used four sets of real-world SPARQL benchmark queries

(300 queries each):

* SWDF BGP-only is the SWDF benchmark containing only single BGP queries; the other SPARQL features
such as OPTIONAL, UNION etc. are not used,

* SWDF fully-featured is the SWDF benchmark containing fully-featured (multiple BGPs, aggregates, functions
etc.) SPARQL queries,

lhttps ://github.com/dice-group/workload-aware-rdf-partitioning
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Table 1: The total number of triples, distinct subjects, predicates, and objects within the used datasets.

Triples Subjects  Predicates Objects

DBpedia 232,536,510 18,425,128 39,672 65,184,193

SWDF 304,583 36,879 185 95,501

* DBpedia BGP-only is the DBpedia benchmark only containing single BGP queries, and

* DBpedia fully-featured benchmark queries contain not only single BGPs but may also include additional
constructs.

These benchmarks are generated by using FEASIBLE [3], a real benchmark generation framework, out of the
query logs.

Workloads (train queries). We used a query workload of 3000 queries for both DBpedia and SWDF, which
are selected from real-world query logs of these datasets. The reason for choosing 3000 was according to the
10-fold cross validation®, which suggests choosing 10% test queries and 90% training queries.

Partitioning Environments. As in [1], we used two different partitioning environments to evaluate our
techniques:

* aclustered or distributed RDF storage environment, where the given dataset is distributed among n data
nodes of a clustered triple store, and

* a purely federated environment, where the dataset is distributed among multiple SPARQL endpoints that
are physically separated from each other, and a federation engine is used to perform the query processing
task.

We used Koral [2] distributed RDF engines for the first type of partitioning environment. We chose Koral due to
its flexibility in choosing different partitioning methods for data distribution among data nodes. Moreover, it has
already been used in [1].

For the second type of partitioning environment, we used FedX [5] and SemaGrow. The reason for choosing these
two engines was their different query planning strategies: FedX implements an index-free and heuristic-based
query planner, while SemaGrow implements an index-assisted and cost-based query planner. Both were also used
in [1]. It is important to note that Koral does not support many of the SPARQL features used in the fully-featured
SPARQL benchmarks. Therefore, we used BGP-only queries in our Koral-based evaluation.

Number of Partitions. Following [1] and [4], we generated 10 partitions of the selected datasets. Therefore, 10
slaves were created in Koral, each responsible for one partition. Similarly, we used 10 Linux-based Openlink
Virtuoso 7.13 SPARQL endpoints, each storing one partition. The selected federation engines physically federate
the given SPARQL query over these endpoints.

Selected RDF Graph Partitioning Techniques. We selected state-of-the-art techniques for partitioning RDF
graph based on the following criteria:

* open source and configurable,

2https ://machinelearningmastery.com/k-fold-cross-validation/
3https://virtuoso.openlinksw.com/
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» working for RDF data,

* scaleable to medium-large datasets, such as DBpedia in our case,

take the RDF dataset and/or workload as input and give the required number of RDF chunks as output, and

* do not require online services such as cloud or configuring online datasets.

Based on these criteria, we selected the following ten RDF graph partitioning techniques to consider in the
evaluation results: Horizontal, Subject-Based, Predicate-Based, Hierarchical, Recursive-Bisection, TCV-Min,
Min-Edgecut, Partout, PCG, PCM. Note that the workload-aware technique Partout worked only for SWDF
datasets; for DBpedia, it was unable to partition the dataset in 3 days*.

Performance Measures. As in [1], we used five performance metrics: partitions generation time, Queries per
Second (QpS) [1, 3], overall rank score, partitioning imbalance, and the total number of sources selected for
the complete benchmark execution in a purely federated environment. We used a three minutes timeout for
execution of each query [3, 1].

The rank score of the partitioning technique is defined as follows [1]:

Definition 1 (Rank Score) Let t be the total number of partitioning techniques and b be the total number of
benchmark executions used for the evaluation. Let 1 < r < t denote the rank number and let Op(r) denote the
occurrence of a partitioning technique p placed at rank r. The rank score of the partitioning technique p is

defined as follows:

In our evaluation, we have a total of ten partitioning techniques (i.e., t = 10 for SWDF, and 9 for DBpedia) and
a total of 10 benchmarks executions (i.e., b = 10, 4 benchmarks by FedX + 4 benchmarks by SemaGrow + 2
benchmarks by Koral).

The partitioning imbalance in the size of the generated partitions is defined as follows [1]:

Definition 2 (Partitioning Imbalance) Let n be the total number of partitions generated by a partitioning
technique and let Py, P, . .. P, be the set of these partitions, ordered by increasing size of the number of triples.
The imbalance in partitions is defined as the Gini coefficient:

2> (i x |Fl))
[ = S _n+1,0§b<1
n_
(n—1) x Zl‘Pj’
]:

Hardware and Software Specifications. The hardware and software configuration for our techniques is the
same as in [1], i.e., all our experiments are executed on an Ubuntu-based machine with Intel Xeon 2.10 GHz, 64
cores, and 512 GB of RAM. We conducted our experiments on local copies of Virtuoso (version 7.1) SPARQL
endpoints. We used default configurations for FedX, SemaGrow and Koral (except that the slaves in Koral were
changed from 2 to 10).

*We have discussed this issue with the authors of the Partout system.
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2.2 Evaluation Results

Note that the results of Partout (PT) are shown only for SWDF, as it was unable to partition the DBpedia dataset.

Partition Generation Time. Figure 1 shows a comparison of the total time it took to generate the required
10 partitions for both datasets used in our evaluation. PT took the most time, followed by PCG, Min-Edgecut,
Recursive-Bisection, TCV-Min, PCM, Hierarchical, Predicate-Based, Subject-Based and Horizontal, respectively.
The rest of the discussion is focused on PCG, as it is the best performing method proposed in our deliverable.
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Figure 1: Time in seconds required to create 10 partitions. (PB = Predicate-Based, SB = Subject-Based, HI =
Hierarchical, HO = Horizontal, TC = TCV-Min, ME = Min-Edgecut, RB = Recursive Bisection, PT = Partout)

Query per Second (QpS). Query per Second (QpS) is important for measuring query runtime performance
with respect to different partitioning techniques. The idea is to find out how many queries are executed by a
technique in one second. The higher the QpS value, the better the query runtime performance. Figure 2 shows
a comparison of the QpS values of the selected partitioning techniques for each of the four benchmarks and
three different query execution engines. Since Koral only supports BGP-only queries, we used SWDF-BGP
and DBpedia-BGP benchmarks. For each timeout query, we added an extra 180 seconds to the total benchmark
execution time. The results show that the proposed PCG method significantly outperforms the other partitioning
methods in the majority of benchmark executions. In particular, PCG ranked first or second in 7/10 benchmark
executions.

Rank Scores. It is difficult to determine an overall winner in terms of query runtime performance from the QpS
results. The rank score shows the overall ranking of a particular method compared to other selected methods
in the completed benchmark executions. The rank score is a value between 0 and 1, where 1 represents the
highest ranking. Figure 3a represents the computed rank scores for each partitioning technique according to
Definition 1. The overall results show that PCG has the highest ranked score, followed by PT, PCM, TCV-Min,
Predicate-Based, Horizontal, Recursive-Bisection, Subject-Based, Hierarchical, and Min-Edgecut, respectively.

Partitioning Imbalance. Figure 3b shows the values of partitioning imbalance (Definition 2) of the partitions
generated by the selected partitioning techniques. Horizontal partioning results in the smallest partitioning
imbalance, followed by Hierarchical, Subject-Based, PCM, PCG, Min-Edgecut, Recursive-Bisection, TCV-Min,
Partout, and Predicate-Based, respectively.

Number of Sources Selected. The number of sources (in our case SPARQL endpoints) selected by the federation
engine to execute a given SPARQL query is an important performance metric for federated SPARQL querying
engines [4]. The smaller the number of selected sources, the lower the communication cost, and hence the better
the query runtime performance [1, 4]. Figure 4 shows the total number of distinct sources selected by FedX and
SemaGrow. For SWDF, PT selects the smallest sources, followed by PCG and PCM. As an overall (1200 queries)
source selection evaluation, PCG selects the smallest number of sources, followed by PCM, Predicate-Based,
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Figure 2: QpS (for all four benchmarks) including timeouts. (SW = Semantic Web Dog Food, DB = DBpedia,
BGP = Basic Graph Pattern, FF = Fully Featured, PB = Predicate-Based, SB = Subject-Based, Hi= Hierarchical,
Ho = Horizontal, TC = TCV-Min, ME = Min-Edgecut, RB = Recursive Bisection, PT = Partout)

Min-Edgecut, TCV-Min, Recursive-Bisection, Subject-Based, Hierarchical and Horizontal, respectively.

Key observation. The results show that PCG significantly outperformed the other selected techniques for SWDF
benchmarks (Figure 2a, Figure 2b, Figure 2e, Figure 2f, Figure 2g) in comparison to DBpedia benchmarks
(Figure 2c, Figure 2d, Figure 2h). The average QpS of PCG is 20.07 for SWDF benchmarks, which is 3.30 times
faster than the second best performing partitioning method. On the other hand, the average QpS of PCG is 0.028
for DBpedia benchmarks which is only 1.06 times faster than the second-best performing partitioning method.
A detailed examination of the query workload and RDF datasets shows that the query workload used for our
SWDF evaluation already covered 63.7% of the total 185 predicates used in the SWDF dataset. Thus, more
predicates were correctly grouped into the desired partitions. On the other hand, the DBpedia dataset contains
a total of 39672 distinct predicates, of which only 0.55% were covered by the used workload. As a result, a
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Figure 3: Rank scores and partitioning imbalance of the partitioning techniques. (PB = Predicate-Based, SB=
Subject-Based, Hi= Hierarchical, Ho = Horizontal, TC = TCV-Min, ME Min-Edgecut, RB = Recursive Bisection,
PT = Partout)
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Figure 4: Total distinct sources selected

majority of the predicates were grouped into a separate partition for unused predicates. Consequently, only a
small portion of the predicates were correctly mapped into correct partitions. In conclusion, the complexity of
dataset and quality and size of workload can have a significant impact on the quality of partitioning achieved by
the methods proposed in our work.

Number of Timeout Queries. Table 2 shows the number of timeout queries for each of the benchmarks and
for each query execution engine. PCG has the fewest timeout queries (231 queries) followed by; Min-Edgecut
(344 queries), PCM (397 queries), Subject-Based (422 queries), TCV-Min (455 queries), Predicate-Based
(485 queries), Horizontal (498 queries), Hierarchical (544 queries), and Recursive-Bisection (556 queries),
respectively.

3 Conclusion and Future Work

In D3.1, two RDF graph partitioning techniques were proposed:
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Table 2: Timeout queries using FedX, SemaGrow and Koral

FedX SemaGrow Koral Total

SWDF DBpedia SWDF DBpedia SWDF DBpedia

Partitioning BGP FF BGP FF BGP FF BGP FF BGP BGP
Predicate-Based 0 35 32 73 0 20 35 81 0 209 485
Subject-Based 0 2429 69 0 20 35 83 0 162 422
Hierarchical 0 28 28 70 0 20 33 79 0 286 544
Horizontal 0 12 31 73 0 19 34 83 0 246 498
TCV-Min 0 24 35 170 0 20 33 85 0 188 455
Min-Edgecut 0 30 35 74 0 22 34 84 0 65 344
Recursive-Bisection 0 19 32 70 0 21 35 81 0 298 556
Partout 0 1 0 1 0 2
PCM 0 20 40 68 0 11 20 51 0 187 397
PCG 0 0 5270 0 2 16 32 0 59 231

* predicates co-occurrence-based partitioning using a greedy algorithm (PCG), and

* predicates co-occurrence-based partitioning using extended Markov clustering (PCM).

Both of these techniques make use of clustering algorithms to first cluster all the predicates used in the input
query workload. Partitions are then created according to the clusters such that all triples pertaining to predicates
in a given cluster are distributed into the same partition. The details of these techniques are documented in
the previous deliverable (D3.1: Initial Report on the Automatic Data Distribution), and are evaluated in this
deliverable using various real-world data and query benchmarks; the details are documented in this deliverable.

Our overall results indicate the superiority of our proposed techniques compared to the other techniques, in terms
of better query runtime performance, number of timeout queries, overall rank score, and number of distinct
sources selected. It was found that the quality and size of the workload is a key to obtain better results by
the proposed methods. Our proposed techniques naturally lead to predicate-based indexing used in existing
state-of-the-art RDF engines. Moreover, the created partitions can be easily managed in terms of index updates
or dynamic shuffling of data among multiple data nodes of a clustered triple store.

In the future, we plan to measure the impact of query workloads on the accuracy of data distribution. In addition,
it is highly possible that the initial distribution of data is suboptimal and therefore dynamic shuffling of data is
required. To this end, proposing a self-updating, dynamic data distribution mechanism based on experienced
workload is recommended.
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